2021-07-22 11:30:00 -04:00
|
|
|
|
% \documentclass[twocolumn]{article}
|
|
|
|
|
\documentclass{report}
|
|
|
|
|
\usepackage[top=1in,left=1.5in,right=1in,bottom=1in]{geometry}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\usepackage{siunitx}
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\usepackage{multicol}
|
|
|
|
|
\setlength{\columnsep}{1cm}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\usepackage[acronym]{glossaries}
|
|
|
|
|
\usepackage[T1]{fontenc}
|
|
|
|
|
\usepackage{enumitem}
|
|
|
|
|
\usepackage{titlesec}
|
|
|
|
|
\usepackage{titlecaps}
|
|
|
|
|
\usepackage{upgreek}
|
|
|
|
|
\usepackage{graphicx}
|
|
|
|
|
\usepackage{subcaption}
|
|
|
|
|
\usepackage{nth}
|
|
|
|
|
\usepackage[capitalize]{cleveref}
|
|
|
|
|
\usepackage[version=4]{mhchem}
|
|
|
|
|
\usepackage{pgfgantt}
|
2021-07-09 13:13:57 -04:00
|
|
|
|
\usepackage{setspace}
|
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\doublespacing{}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\titleformat{\chapter}[block]{\filcenter\bfseries\large}
|
|
|
|
|
{\MakeUppercase{\chaptertitlename} \thechapter: }{0pt}{\uppercase}
|
|
|
|
|
% \titleformat{\chapter}[block]{\filcenter\bfseries\large}{}{0pt}{\uppercase}
|
|
|
|
|
\titleformat{\section}[block]{\bfseries\large}{}{0pt}{\titlecap}
|
|
|
|
|
\titleformat{\subsection}[block]{\itshape\large}{}{0pt}{\titlecap}
|
2021-07-22 12:09:26 -04:00
|
|
|
|
\titleformat{\subsubsection}[runin]{\bfseries\itshape\/}{}{0pt}{\titlecap}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\setlist[description]{font=$\bullet$~\textbf\normalfont}
|
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
% acronyms for the lazy
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\renewcommand{\glossarysection}[2][]{} % remove glossary title
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\makeglossaries{}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\newacronym{act}{ACT}{adoptive cell therapies}
|
2021-07-09 13:13:57 -04:00
|
|
|
|
\newacronym{car}{CAR}{chimeric antigen receptor}
|
|
|
|
|
\newacronym[longplural={monoclonal antibodies}]{mab}{mAb}{monoclonal antibody}
|
|
|
|
|
\newacronym{ecm}{ECM}{extracellular matrix}
|
|
|
|
|
\newacronym{cqa}{CQA}{critical quality attribute}
|
|
|
|
|
\newacronym{cpp}{CPP}{critical process parameter}
|
|
|
|
|
\newacronym{dms}{DMS}{degradable microscaffold}
|
|
|
|
|
\newacronym{doe}{DOE}{design of experiments}
|
2021-07-22 13:14:35 -04:00
|
|
|
|
\newacronym{gmp}{GMP}{Good Manufacturing Practices}
|
|
|
|
|
\newacronym{cho}{CHO}{Chinese hamster ovary}
|
|
|
|
|
\newacronym{all}{ALL}{acute lymphoblastic leukemia}
|
|
|
|
|
\newacronym{pdms}{PDMS}{polydimethylsiloxane}
|
|
|
|
|
\newacronym{dc}{DC}{dendritic cell}
|
|
|
|
|
\newacronym{il2}{IL2}{interleukin 2}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newacronym{rhil2}{rhIL2}{recombinant human interleukin 2}
|
2021-07-22 16:23:07 -04:00
|
|
|
|
\newacronym{apc}{APC}{antigen presenting cell}
|
|
|
|
|
\newacronym{mhc}{MHC}{major histocompatibility complex}
|
|
|
|
|
\newacronym{elisa}{ELISA}{enzyme-linked immunosorbent assay}
|
|
|
|
|
\newacronym{nmr}{NMR}{nuclear magnetic resonance}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newacronym{haba}{HABA}{4-hydroxyazobenene-2-carboxylic-acid}
|
|
|
|
|
\newacronym{pbs}{PBS}{phosphate buffered saline}
|
|
|
|
|
\newacronym{bca}{BCA}{bicinchoninic acid assay}
|
|
|
|
|
\newacronym{bsa}{BSA}{bovine serum albumin}
|
|
|
|
|
\newacronym{stp}{STP}{streptavidin}
|
|
|
|
|
\newacronym{snb}{SNB}{sulfo-nhs-biotin}
|
|
|
|
|
\newacronym{cug}{CuG}{Cultispher G}
|
|
|
|
|
\newacronym{cus}{CuS}{Cultispher S}
|
|
|
|
|
\newacronym{pbmc}{PBMC}{peripheral blood mononuclear cells}
|
|
|
|
|
\newacronym{macs}{MACS}{magnetic activated cell sorting}
|
|
|
|
|
\newacronym{aopi}{AO/PI}{acridine orange/propidium iodide}
|
|
|
|
|
\newacronym{igg}{IgG}{immunoglobulin G}
|
|
|
|
|
\newacronym{crispr}{CRISPR}{clustered regularly interspaced short
|
|
|
|
|
palindromic repeats}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% SI units for uber nerds
|
|
|
|
|
|
|
|
|
|
% NOTE the \SI macro is depreciated but the arch repo (!!!) hasn't been updated
|
|
|
|
|
% with the latest package yet (texlive-science)
|
|
|
|
|
|
|
|
|
|
\sisetup{per-mode=symbol,list-units=single}
|
|
|
|
|
\DeclareSIUnit\IU{IU}
|
|
|
|
|
\DeclareSIUnit\rpm{RPM}
|
|
|
|
|
\DeclareSIUnit\dms{DMS}
|
|
|
|
|
\DeclareSIUnit\cell{cells}
|
|
|
|
|
\DeclareSIUnit\ab{mAb}
|
|
|
|
|
\DeclareSIUnit\molar{M}
|
|
|
|
|
\DeclareSIUnit\gforce{\times{} g}
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
% commands for lazy farts like me
|
2021-07-22 13:23:44 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\newcommand{\mytitle}{
|
|
|
|
|
\Large{
|
|
|
|
|
\textbf{
|
|
|
|
|
Optimizing T Cell Manufacturing and Quality Using Functionalized
|
|
|
|
|
Degradable Microscaffolds
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
\newcommand{\mycommitteemember}[3]{
|
|
|
|
|
\begin{flushleft}
|
|
|
|
|
\noindent
|
|
|
|
|
#1 \\
|
|
|
|
|
#2 \\
|
|
|
|
|
\textit{#3}
|
|
|
|
|
\end{flushleft}
|
|
|
|
|
}
|
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
\newcommand{\invivo}{\textit{in vivo}}
|
|
|
|
|
|
|
|
|
|
\newcommand{\invitro}{\textit{in vitro}}
|
|
|
|
|
|
|
|
|
|
\newcommand{\exvivo}{\textit{ex vivo}}
|
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newcommand{\cd}[1]{CD{#1}}
|
|
|
|
|
\newcommand{\anti}[1]{anti-{#1}}
|
|
|
|
|
\newcommand{\anticd}[1]{\anti{\cd{#1}}}
|
|
|
|
|
\newcommand{\cdp}[1]{\cd{#1}+}
|
|
|
|
|
\newcommand{\cdn}[1]{\cd{#1}-}
|
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% ditto for environments
|
2021-07-22 13:23:44 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\newenvironment{mytitlepage}{
|
|
|
|
|
\begin{singlespace}
|
|
|
|
|
\begin{center}
|
|
|
|
|
}
|
|
|
|
|
{
|
|
|
|
|
\end{center}
|
|
|
|
|
\end{singlespace}
|
|
|
|
|
}
|
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% begin document (proceed with caution)
|
2021-07-22 13:23:44 -04:00
|
|
|
|
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
|
|
\begin{titlepage}
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\begin{mytitlepage}
|
|
|
|
|
\mytitle{}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\Large{
|
|
|
|
|
A Dissertation \\
|
|
|
|
|
Presented to \\
|
|
|
|
|
The Academic Faculty \\
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
by
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
Nathan John Dwarshuis, B.S. \\
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
In Partial Fulfillment \\
|
|
|
|
|
of the Requirements for the Degree \\
|
|
|
|
|
Doctor of Philosophy in Biomedical Engineering in the \\
|
|
|
|
|
Wallace H. Coulter Department of Biomedical Engineering
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
Georgia Institute of Technology and Emory University \\
|
|
|
|
|
August 2021
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
COPYRIGHT \copyright{} BY NATHAN J. DWARSHUIS
|
|
|
|
|
}
|
|
|
|
|
\end{mytitlepage}
|
|
|
|
|
\end{titlepage}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\onecolumn \pagenumbering{roman}
|
|
|
|
|
\clearpage
|
|
|
|
|
\begin{mytitlepage}
|
|
|
|
|
\mytitle{}
|
|
|
|
|
\end{mytitlepage}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\large{
|
|
|
|
|
\noindent
|
|
|
|
|
Committee Members
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\begin{multicols}{2}
|
|
|
|
|
\begin{singlespace}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Krishnendu\ Roy\ (Advisor)}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Madhav\ Dhodapkar}
|
|
|
|
|
{Department of Hematology and Medical Oncology}
|
|
|
|
|
{Emory University}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Melissa\ Kemp}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\columnbreak{}
|
|
|
|
|
\null{}
|
|
|
|
|
\vfill
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Wilbur\ Lam}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
|
|
|
|
|
|
|
|
|
\vspace{1.5em}
|
|
|
|
|
|
|
|
|
|
\mycommitteemember{Dr.\ Sakis\ Mantalaris}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
|
|
|
|
|
|
|
|
|
\end{singlespace}
|
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
|
|
\vspace{1.5em}
|
|
|
|
|
|
|
|
|
|
\hfill Date Approved:
|
|
|
|
|
}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter*{acknowledgements}
|
|
|
|
|
\addcontentsline{toc}{chapter}{acknowledgements}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
Thank you to Lex Fridman and Devin Townsend for being awesome and inspirational.
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter*{summary}
|
|
|
|
|
\addcontentsline{toc}{chapter}{summary}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-09 13:13:57 -04:00
|
|
|
|
\Gls{act} using \gls{car} T cells have shown promise in treating cancer, but
|
|
|
|
|
manufacturing large numbers of high quality cells remains challenging. Currently
|
2021-07-22 18:34:50 -04:00
|
|
|
|
approved T cell expansion technologies involve \anti-cd{3} and \anti-cd{28}
|
|
|
|
|
\glspl{mab}, usually mounted on magnetic beads. This method fails to
|
|
|
|
|
recapitulate many key signals found \invivo{} and is also heavily licensed by a
|
|
|
|
|
few companies, limiting its long-term usefulness to manufactures and clinicians.
|
|
|
|
|
Furthermore, we understand that highly potent T cells are generally
|
|
|
|
|
less-differentiated subtypes such as central memory and stem memory T cells.
|
|
|
|
|
Despite this understanding, little has been done to optimize T cell expansion
|
|
|
|
|
for generating these subtypes, including measurement and feedback control
|
|
|
|
|
strategies that are necessary for any modern manufacturing process.
|
2021-07-09 13:13:57 -04:00
|
|
|
|
|
|
|
|
|
The goal of this thesis was to develop a microcarrier-based \gls{dms} T cell
|
|
|
|
|
expansion system as well as determine biologically-meaningful \glspl{cqa} and
|
|
|
|
|
\glspl{cpp} that could be used to optimize for highly-potent T cells. In Aim 1,
|
|
|
|
|
we develop and characterized the \gls{dms} system, including quality control
|
|
|
|
|
steps. We also demonstrate the feasiblity of expanding highly-potent memory and
|
|
|
|
|
CD4+ T cells, and showing compatibility with existing \gls{car} transduction
|
|
|
|
|
methods. In aim 2, we use \gls{doe} methodology to optimize the \gls{dms}
|
|
|
|
|
platform, and develop a computational pipeline to identify and model the effect
|
|
|
|
|
of measurable \glspl{cqa} and \glspl{cpp} on the final product. In aim 3, we
|
2021-07-22 13:23:44 -04:00
|
|
|
|
demonstrate the effectiveness of the \gls{dms} platform \invivo{}. This
|
2021-07-09 13:13:57 -04:00
|
|
|
|
thesis lays the groundwork for a novel T cell expansion method which can be used
|
|
|
|
|
in a clinical setting, and also provides a path toward optimizing for product
|
|
|
|
|
quality in an industrial setting.
|
|
|
|
|
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
\tableofcontents
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
\listoffigures
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
\listoftables
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
% \twocolumn
|
|
|
|
|
\chapter*{acronyms}
|
|
|
|
|
\addcontentsline{toc}{chapter}{acronyms}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\printglossary[type=\acronymtype]
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
\pagenumbering{arabic}
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter{introduction}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
\section*{overview}
|
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
% TODO this is basically the same as the first part of the backgound, I guess I
|
|
|
|
|
% can just trim it down
|
|
|
|
|
|
2021-07-22 13:14:35 -04:00
|
|
|
|
T cell-based immunotherapies have received great interest from clinicians and
|
|
|
|
|
industry due to their potential to treat, and often cure, cancer and other
|
|
|
|
|
diseases\cite{Fesnak2016,Rosenberg2015}. In 2017, Novartis and Kite Pharma
|
|
|
|
|
received FDA approval for \textit{Kymriah} and \textit{Yescarta} respectively,
|
|
|
|
|
two genetically-modified \gls{car} T cell therapies against B cell malignancies.
|
|
|
|
|
Despite these successes, \gls{car} T cell therapies are constrained by an
|
|
|
|
|
expensive and difficult-to-scale manufacturing process with little control on
|
|
|
|
|
cell quality and phenotype3,4. State-of-the-art T cell manufacturing techniques
|
2021-07-22 18:34:50 -04:00
|
|
|
|
focus on \anticd{3} and \anticd{28} activation and expansion, typically
|
|
|
|
|
presented on superparamagnetic, iron-based microbeads (Invitrogen Dynabead,
|
|
|
|
|
Miltenyi MACS beads), on nanobeads (Miltenyi TransACT), or in soluble tetramers
|
2021-07-22 13:14:35 -04:00
|
|
|
|
(Expamer)\cite{Roddie2019,Dwarshuis2017,Wang2016, Piscopo2017, Bashour2015}.
|
|
|
|
|
These strategies overlook many of the signaling components present in the
|
2021-07-22 13:23:44 -04:00
|
|
|
|
secondary lymphoid organs where T cells expand \invivo{}. Typically, T cells are
|
2021-07-22 13:14:35 -04:00
|
|
|
|
activated under close cell-cell contact, which allows for efficient
|
|
|
|
|
autocrine/paracrine signaling via growth-stimulating cytokines such as
|
|
|
|
|
\gls{il2}. Additionally, the lymphoid tissues are comprised of \gls{ecm}
|
|
|
|
|
components such as collagen, which provide signals to upregulate proliferation,
|
|
|
|
|
cytokine production, and pro-survival pathways\cite{Gendron2003, Ohtani2008,
|
|
|
|
|
Boisvert2007, Ben-Horin2004}. We hypothesized that culture conditions that
|
2021-07-22 13:23:44 -04:00
|
|
|
|
better mimic these \invivo{} expansion conditions of T cells, can significantly
|
2021-07-22 13:14:35 -04:00
|
|
|
|
improve the quality and quantity of manufactured T cells and provide better
|
|
|
|
|
control on the resulting T cell phenotype.
|
|
|
|
|
|
|
|
|
|
% TODO mention the Cloudz stuff that's in my presentation
|
|
|
|
|
|
|
|
|
|
A variety of solutions have been proposed to make the T cell expansion process
|
|
|
|
|
more physiological. One strategy is to use modified feeder cell cultures to
|
|
|
|
|
provide activation signals similar to those of \glspl{dc}\cite{Forget2014}.
|
|
|
|
|
While this has the theoretical capacity to mimic many components of the lymph
|
|
|
|
|
node, it is hard to reproduce on a large scale due to the complexity and
|
|
|
|
|
inherent variability of using cell lines in a fully \gls{gmp}-compliant manner.
|
|
|
|
|
Others have proposed biomaterials-based solutions to circumvent this problem,
|
|
|
|
|
including lipid-coated microrods\cite{Cheung2018}, 3D-scaffolds via either
|
|
|
|
|
Matrigel\cite{Rio2018} or 3d-printed lattices\cite{Delalat2017}, ellipsoid
|
|
|
|
|
beads\cite{meyer15_immun}, and \gls{mab}-conjugated \gls{pdms}
|
|
|
|
|
beads\cite{Lambert2017} that respectively recapitulate the cellular membrane,
|
|
|
|
|
large interfacial contact area, 3D-structure, or soft surfaces T cells normally
|
2021-07-22 13:23:44 -04:00
|
|
|
|
experience \invivo{}. While these have been shown to provide superior expansion
|
2021-07-22 13:14:35 -04:00
|
|
|
|
compared to traditional microbeads, none of these methods has been able to show
|
|
|
|
|
preferential expansion of functional naïve/memory and CD4 T cell populations.
|
|
|
|
|
Generally, T cells with a lower differentiation state such as naïve and memory
|
|
|
|
|
cells have been shown to provide superior anti-tumor potency, presumably due to
|
|
|
|
|
their higher potential to replicate, migrate, and engraft, leading to a
|
|
|
|
|
long-term, durable response\cite{Xu2014, Fraietta2018, Gattinoni2011,
|
|
|
|
|
Gattinoni2012}. Likewise, CD4 T cells are similarly important to anti-tumor
|
|
|
|
|
potency due to their cytokine release properties and ability to resist
|
|
|
|
|
exhaustion\cite{Wang2018, Yang2017}. Therefore, methods to increase naïve/memory
|
|
|
|
|
and CD4 T cells in the final product are needed, a critical consideration being
|
|
|
|
|
ease of translation to industry and ability to interface with scalable systems
|
|
|
|
|
such as bioreactors.
|
|
|
|
|
|
|
|
|
|
% TODO probably need to address some of the modeling stuff here as well
|
|
|
|
|
|
|
|
|
|
This thesis describes a novel degradable microscaffold-based method derived from
|
2021-07-22 18:34:50 -04:00
|
|
|
|
porous microcarriers functionalized with \anticd{3} and \anticd{28} \glspl{mab}
|
|
|
|
|
for use in T cell expansion cultures. Microcarriers have historically been used
|
2021-07-22 13:14:35 -04:00
|
|
|
|
throughout the bioprocess industry for adherent cultures such as stem cells and
|
|
|
|
|
\gls{cho} cells, but not with suspension cells such as T
|
|
|
|
|
cells\cite{Heathman2015, Sart2011}. The microcarriers chosen to make the DMSs in
|
|
|
|
|
this study have a microporous structure that allows T cells to grow inside and
|
|
|
|
|
along the surface, providing ample cell-cell contact for enhanced autocrine and
|
|
|
|
|
paracrine signaling. Furthermore, the carriers are composed of gelatin, which is
|
|
|
|
|
a collagen derivative and therefore has adhesion domains that are also present
|
|
|
|
|
within the lymph nodes. Finally, the 3D surface of the carriers provides a
|
|
|
|
|
larger contact area for T cells to interact with the \glspl{mab} relative to
|
|
|
|
|
beads; this may better emulate the large contact surface area that occurs
|
|
|
|
|
between T cells and \glspl{dc}. These microcarriers are readily available in
|
|
|
|
|
over 30 countries and are used in an FDA fast-track-approved combination retinal
|
|
|
|
|
pigment epithelial cell product (Spheramine, Titan Pharmaceuticals) {\#}[Purcell
|
|
|
|
|
documentation]. This regulatory history will aid in clinical translation. We
|
|
|
|
|
show that compared to traditional microbeads, \gls{dms}-expanded T cells not
|
|
|
|
|
only provide superior expansion, but consistently provide a higher frequency of
|
|
|
|
|
naïve/memory and CD4 T cells (CCR7+CD62L+) across multiple donors. We also
|
|
|
|
|
demonstrate functional cytotoxicity using a CD19 \gls{car} and a superior
|
|
|
|
|
performance, even at a lower \gls{car} T cell dose, of \gls{dms}-expanded
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\gls{car}-T cells \invivo{} in a mouse xenograft model of human B cell
|
|
|
|
|
\gls{all}. Our results indicate that \glspl{dms} provide a robust and scalable
|
|
|
|
|
platform for manufacturing therapeutic T cells with higher naïve/memory
|
|
|
|
|
phenotype and more balanced CD4+ T cell content.
|
2021-07-22 13:14:35 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section*{hypothesis}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
The hypothesis of this dissertation was that using \glspl{dms} created from
|
|
|
|
|
off-the-shelf microcarriers and coated with activating \glspl{mab} would lead to
|
|
|
|
|
higher quantity and quality T cells as compared to state-of-the-art bead-based
|
|
|
|
|
expansion. The objective of this dissertation was to develop this platform, test
|
|
|
|
|
its effectiveness both \invivo{} and \invivo{}, and develop computational
|
|
|
|
|
pipelines that could be used in a manufacturing environment.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section*{specific aims}
|
2021-07-22 13:48:51 -04:00
|
|
|
|
|
|
|
|
|
The specific aims of this dissertation are outlined in
|
|
|
|
|
\cref{fig:graphical_overview}.
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics[width=\textwidth]{example-image-a}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Project Overview]{High-level workflow.}
|
|
|
|
|
\label{fig:graphical_overview}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\subsection*{aim 1: develop and optimize a novel T cell expansion process that
|
|
|
|
|
mimics key components of the lymph nodes}
|
|
|
|
|
|
|
|
|
|
% TODO this might be easier to break apart in separate aims
|
|
|
|
|
|
|
|
|
|
In this first aim, we demonstrated the process for manufacturing \glspl{dms},
|
|
|
|
|
including quality control steps that are necessary for translation of this
|
|
|
|
|
platform into a scalable manufacturing setting. We also demonstrate that the
|
|
|
|
|
\gls{dms} platform leads to higher overall expansion of T cells and higher
|
|
|
|
|
overall fractions of potent memory and CD4+ subtypes desired for T cell
|
|
|
|
|
therapies. Finally, we demonstrate \invitro{} that the \gls{dms} platform can be
|
|
|
|
|
used to generate functional \gls{car} T cells targeted toward CD19.
|
|
|
|
|
|
|
|
|
|
\subsection*{aim 2: develop methods to control and predict T cell quality}
|
|
|
|
|
|
|
|
|
|
For this second aim, we investigated methods to identify and control \glspl{cqa}
|
|
|
|
|
and glspl{cpp} for manufacturing T cells using the \gls{dms} platform. This was
|
|
|
|
|
accomplished through two sub-aims:
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item[A --] Develop computational methods to control and predict T cell
|
|
|
|
|
expansion and quality
|
|
|
|
|
\item[B --] Perturb \gls{dms} expansion to identify additional mechanistic
|
|
|
|
|
controls for expansion and quality
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\subsection*{aim 3: confirm potency of T cells from novel T cell expansion
|
|
|
|
|
process using \invivo{} xenograft mouse model}
|
|
|
|
|
|
|
|
|
|
In this final aim, we demonstrate the effectiveness of \gls{dms}-expanded T
|
|
|
|
|
cells compared to state-of-the-art beads using \invivo{} mouse models for
|
|
|
|
|
\gls{all}.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section*{outline}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
In Chapter~\ref{background}, we provide additional background on the current
|
|
|
|
|
state of T cell manufacturing and how the work in this dissertation moves the
|
|
|
|
|
field forward. In Chapters~\ref{aim1},~\ref{aim2}, and~\ref{aim3} we present the
|
|
|
|
|
work pertaining to Aims 1, 2, and 3 respectively. Finally, we present our final
|
|
|
|
|
conclusions in Chapter~\ref{conclusions}.
|
|
|
|
|
|
|
|
|
|
\chapter{background and significance}\label{background}
|
|
|
|
|
\section*{background}
|
2021-07-22 16:23:07 -04:00
|
|
|
|
|
|
|
|
|
% TODO break this apart into mfg tech and T cell phenotypes/quality
|
|
|
|
|
% TODO consider adding a separate section on microcarriers and their use in
|
|
|
|
|
% bioprocess
|
|
|
|
|
% TODO add stuff about T cell licensing
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\subsection*{current T cell manufacturing technologies}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
\Gls{car} T cell therapy has received great interest from both academia and
|
|
|
|
|
industry due to its potential to treat cancer and other
|
|
|
|
|
diseases\cite{Fesnak2016, Rosenberg2015}. In 2017, Novartis and Kite Pharma
|
|
|
|
|
acquired FDA approval for \textit{Kymriah} and \textit{Yescarta} respectively,
|
|
|
|
|
two \gls{car} T cell therapies against B cell malignancies. Despite these
|
|
|
|
|
successes, \gls{car} T cell therapies are constrained by an expensive and
|
|
|
|
|
difficult-to-scale manufacturing process\cite{Roddie2019, Dwarshuis2017}.
|
|
|
|
|
|
|
|
|
|
Of critical concern, state-of-the-art manufacturing techniques focus only on
|
|
|
|
|
Signal 1 and Signal 2-based activation via anti-CD3 and anti-CD28 \glspl{mab},
|
|
|
|
|
typically presented on a microbead (Invitrogen Dynabead, Miltenyi MACS beads) or
|
|
|
|
|
nanobead (Miltenyi TransACT), but also in soluble forms in the case of antibody
|
|
|
|
|
tetramers (Expamer)\cite{Wang2016, Piscopo2017, Roddie2019, Bashour2015}. These
|
|
|
|
|
strategies overlook many of the signaling components present in the secondary
|
|
|
|
|
lymphoid organs where T cells normally expand. Typically, T cells are activated
|
|
|
|
|
under close cell-cell contact via \glspl{apc} such as \glspl{dc}, which present
|
|
|
|
|
peptide-\glspl{mhc} to T cells as well as a variety of other costimulatory
|
|
|
|
|
signals. These close quarters allow for efficient autocrine/paracrine signaling
|
2021-07-22 18:34:50 -04:00
|
|
|
|
among the expanding T cells, which secrete gls{il2} and other cytokines to
|
|
|
|
|
assist their own growth. Additionally, the lymphoid tissues are comprised of
|
|
|
|
|
\gls{ecm} components such as collagen, which provide signals to upregulate
|
|
|
|
|
proliferation, cytokine production, and pro-survival pathways\cite{Gendron2003,
|
|
|
|
|
Ohtani2008, Boisvert2007, Ben-Horin2004}.
|
2021-07-22 16:23:07 -04:00
|
|
|
|
|
|
|
|
|
A variety of solutions have been proposed to make the T cell expansion process
|
|
|
|
|
more physiological. One strategy is to use modified feeder cell cultures to
|
|
|
|
|
provide activation signals similar to those of \glspl{dc}\cite{Forget2014}.
|
|
|
|
|
While this has the theoretical capacity to mimic several key components of the
|
|
|
|
|
lymph node, it is hard to reproduce on a large scale due to the complexity and
|
|
|
|
|
inherent variability of using cell lines in a fully \gls{gmp}-compliant manner.
|
|
|
|
|
Others have proposed biomaterials-based solutions to circumvent this problem,
|
|
|
|
|
including lipid-coated microrods\cite{Cheung2018}, 3D-scaffolds via either
|
|
|
|
|
Matrigel\cite{Rio2018} or 3d-printed lattices\cite{Delalat2017}, ellipsoid
|
|
|
|
|
beads\cite{meyer15_immun}, and \gls{mab}-conjugated \gls{pdms}
|
|
|
|
|
beads\cite{Lambert2017} that respectively recapitulate the cellular membrane,
|
|
|
|
|
large interfacial contact area, 3D-structure, or soft surfaces T cells normally
|
|
|
|
|
experience \textit{in vivo}. While these have been shown to provide superior
|
|
|
|
|
expansion compared to traditional microbeads, no method has been able to show
|
|
|
|
|
preferential expansion of functional memory and CD4 T cell populations.
|
|
|
|
|
Generally, T cells with a lower differentiation state such as memory cells have
|
|
|
|
|
been shown to provide superior anti-tumor potency, presumably due to their
|
|
|
|
|
higher potential to replicate, migrate, and engraft, leading to a long-term,
|
|
|
|
|
durable response\cite{Xu2014, Gattinoni2012, Fraietta2018, Gattinoni2011}.
|
|
|
|
|
Likewise, CD4 T cells are similarly important to anti-tumor potency due to their
|
|
|
|
|
cytokine release properties and ability to resist exhaustion\cite{Wang2018,
|
|
|
|
|
Yang2017}, and no method exists to preferentially expand the CD4 population
|
|
|
|
|
compared to state-of-the-art systems.
|
|
|
|
|
|
|
|
|
|
Here we propose a method using microcarriers functionalized with anti-CD3 and
|
|
|
|
|
anti-CD28 \glspl{mab} for use in T cell expansion cultures. Microcarriers have
|
|
|
|
|
historically been used throughout the bioprocess industry for adherent cultures
|
|
|
|
|
such as stem cells and \gls{cho} cells, but not with suspension cells such as T
|
|
|
|
|
cells\cite{Heathman2015, Sart2011}. The carriers have a macroporous structure
|
|
|
|
|
that allows T cells to grow inside and along the surface, providing ample
|
|
|
|
|
cell-cell contact for enhanced autocrine and paracrine signaling. Furthermore,
|
|
|
|
|
the carriers are composed of gelatin, which is a collagen derivative and
|
|
|
|
|
therefore has adhesion domains that are also present within the lymph nodes.
|
|
|
|
|
Finally, the 3D surface of the carriers provides a larger contact area for T
|
|
|
|
|
cells to interact with the \glspl{mab} relative to beads; this may better
|
|
|
|
|
emulate the large contact surface area that occurs between T cells and
|
|
|
|
|
\glspl{dc}.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
\subsection*{strategies to optimize cell manufacturing}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
The \gls{dms} system has a number of parameters that can be optimized, and a
|
|
|
|
|
\gls{doe} is an ideal framework to test multiple parameters simultaneously. The
|
|
|
|
|
goal of \gls{doe} is to answer a data-driven question with the least number of
|
|
|
|
|
resources. It was developed in many non-biological industries throughout the
|
|
|
|
|
\nth{20} century such as the automotive and semiconductor industries where
|
|
|
|
|
engineers needed to minimize downtime and resource consumption on full-scale
|
|
|
|
|
production lines.
|
|
|
|
|
|
|
|
|
|
% TODO add a bit more about the math of a DOE here
|
|
|
|
|
|
|
|
|
|
\Glspl{doe} served three purposes in this dissertation. First, we used them as
|
|
|
|
|
screening tools, which allowed us to test many input parameters and filter out
|
|
|
|
|
the few that likely have the greatest effect on the response. Second, they were
|
|
|
|
|
used to make a robust response surface model to predict optimums using
|
|
|
|
|
relatively few resources, especially compared to full factorial or
|
|
|
|
|
one-factor-at-a-time approaches. Third, we used \glspl{doe} to discover novel
|
|
|
|
|
effects and interactions that generated hypotheses that could influence the
|
|
|
|
|
directions for future work.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\subsection*{strategies to characterize cell manufacturing}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
A number of multiomics strategies exist which can generate rich datasets for T
|
|
|
|
|
cells. We will consider several multiomics strategies within this proposal:
|
|
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
|
\item[Luminex:] A multiplexed bead-based \gls{elisa} that can measure
|
|
|
|
|
many bulk (not single cell) cytokine concentrations simultaneously
|
|
|
|
|
in a media sample. Since this only requires media (as opposed to
|
|
|
|
|
destructively measuring cells) we will use this as a longitudinal
|
|
|
|
|
measurement.
|
|
|
|
|
\item[Metabolomics:] It is well known that T cells of different
|
|
|
|
|
lineages have different metabolic profiles; for instance memory T
|
|
|
|
|
cells have larger aerobic capacity and fatty acid
|
|
|
|
|
oxidation\cite{Buck2016, van_der_Windt_2012}. We will interrogate
|
|
|
|
|
key metabolic species using \gls{nmr} in collaboration with the
|
|
|
|
|
Edison Lab at the University of Georgia. This will be both a
|
|
|
|
|
longitudinal assay using media samples (since some metabolites may
|
|
|
|
|
be expelled from cells that are indicative of their phenotype) and
|
|
|
|
|
at endpoint where we will lyse the cells and interogate their entire
|
|
|
|
|
metabolome.
|
|
|
|
|
\item[Flow and Mass Cytometry:] Flow cytometry using fluorophores has been used
|
|
|
|
|
extensively for immune cell analysis, but has a practical limit of
|
|
|
|
|
approximately 18 colors\cite{Spitzer2016}. Mass cytometry is analogous to
|
|
|
|
|
traditional flow cytometry except that it uses heavy-metal \gls{mab}
|
|
|
|
|
conjugates, which has a practical limit of over 50 markers. This will be
|
|
|
|
|
useful in determining precise subpopulations and phenotypes that may be
|
|
|
|
|
influencing responses, especially when one considers that many cell types can
|
|
|
|
|
be defined by more than one marker combination. We will perform this at
|
|
|
|
|
endpoint. While mass cytometry is less practical than simple flow cytometers
|
|
|
|
|
such as the BD Accuri, we may find that only a few markers are required to
|
|
|
|
|
accurately predict performance, and thus this could easily translate to
|
|
|
|
|
industry using relatively cost-effective equipment.
|
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
|
|
% TODO add a computational section
|
|
|
|
|
|
|
|
|
|
% TODO add a section explaining causal inference since this is a big part of
|
|
|
|
|
% the end of aim 1
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{Innovation}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
\subsection{Innovation}
|
|
|
|
|
|
|
|
|
|
Several aspects of this work are novel considering the state-of-the-art
|
|
|
|
|
technology for T cell manufacturing:
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item \Glspl{dms} offers a compelling alternative to state-of-the-art magnetic
|
|
|
|
|
bead technologies (e.g. DynaBeads, MACS-Beads), which is noteworthy because
|
|
|
|
|
the licenses for these techniques is controlled by only a few companies
|
|
|
|
|
(Invitrogen and Miltenyi respectively). Because of this, bead-based expansion
|
|
|
|
|
is more expensive to implement and therefore hinders companies from entering
|
|
|
|
|
the rapidly growing T cell manufacturing arena. Providing an alternative as we
|
|
|
|
|
are doing will add more options, increase competition among both raw material
|
|
|
|
|
and T cell manufacturers, and consequently drive down cell therapy market
|
|
|
|
|
prices and increase innovation throughout the industry.
|
|
|
|
|
\item This is the first technology for T cell immunotherapies that selectively
|
|
|
|
|
expands memory T cell populations with greater efficiency relative to
|
|
|
|
|
bead-based expansion Others have demonstrated methods that can achieve greater
|
|
|
|
|
expansion of T cells, but not necessarily specific populations that are known
|
|
|
|
|
to be potent.
|
|
|
|
|
\item We propose to optimize our systems using \gls{doe} methodology, which is a
|
|
|
|
|
strategy commonly used in other industries and disciplines but has yet to gain
|
|
|
|
|
wide usage in the development of cell therapies. \Glspl{doe} are advantageous
|
|
|
|
|
as they allow the inspection of multiple parameters simultaneously, allowing
|
|
|
|
|
efficient and comprehensive analysis of the system vs a one-factor-at-a-time
|
|
|
|
|
approach. We believe this method is highly relevant to the development of cell
|
|
|
|
|
therapies, not only for process optimization but also hypotheses generation.
|
|
|
|
|
Of further note, most \textit{in vivo} experiments are not done using a
|
|
|
|
|
\gls{doe}-based approach; however, a \gls{doe} is perfectly natural for a
|
|
|
|
|
large mouse study where one naturally desires to use as few animals as
|
|
|
|
|
possible.
|
|
|
|
|
\item The \gls{dms} system is be compatible with static bioreactors such as the
|
|
|
|
|
G-Rex which has been adopted throughout the cell therapy industry. Thus this
|
|
|
|
|
technology can be easily incorporated into existing cell therapy process that
|
|
|
|
|
are performed at scale.
|
|
|
|
|
\item We analyzed our system using a multiomics approach, which will enable the
|
|
|
|
|
discovery of novel biomarkers to be used as \glspl{cqa}. While this approach
|
|
|
|
|
has been applied to T cells previously, it has not been done in the context of
|
|
|
|
|
a large \gls{doe}-based model. This approach is aware of the whole design
|
|
|
|
|
space, and thus enables greater understanding of process parameters and their
|
|
|
|
|
effect on cell phenotype.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
\chapter{aim 1}\label{aim1}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{introduction}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
The first aim was to develop a microcarrier system that mimics several key
|
|
|
|
|
aspects of the \invivo{} lymph node microenvironment. We compared compare this
|
|
|
|
|
system to state-of-the-art T cell activation technologies for both expansion
|
|
|
|
|
potential and memory cell formation. The governing hypothesis was that
|
|
|
|
|
microcarriers functionalized with anti-CD3 and anti-CD28 \glspl{mab} will
|
|
|
|
|
provide superior expansion and memory phenotype compared to state-of-the-art
|
|
|
|
|
bead-based T cell expansion technology.
|
|
|
|
|
|
|
|
|
|
% TODO this doesn't flow that well and is repetitive with what comes above
|
|
|
|
|
|
|
|
|
|
Microcarriers have been used throughout the bioprocess industry for adherent
|
|
|
|
|
cell cultures such as \gls{cho} cells and stem cells, as they are able to
|
|
|
|
|
achieve much greater surface area per unit volume than traditional 2D
|
|
|
|
|
cultures\cite{Heathman2015, Sart2011}. Adding adhesive \glspl{mab} to the
|
|
|
|
|
microcarriers will adapt them for suspension cell cultures such as T cells.
|
|
|
|
|
Consequently, the large macroporous structure will allow T cells to cluster more
|
|
|
|
|
closely, which in turn will enable better autocrine and paracrine signaling.
|
|
|
|
|
Specifically, two cytokines that are secreted by T cells, IL-2 and IL-15, are
|
|
|
|
|
known to drive expansion and memory phenotype respectively\cite{Buck2016}.
|
|
|
|
|
Therefore, the proposed microcarrier system should enable greater expansion and
|
|
|
|
|
better retention of memory phenotype compared to current bead-based methods.
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{methods}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\subsection{dms functionalization}
|
|
|
|
|
|
|
|
|
|
Gelatin microcarriers (\gls{cus} or \gls{cug}, GE Healthcare, DG-2001-OO and
|
|
|
|
|
DG-0001-OO) were suspended at \SI{20}{\mg\per\ml} in 1X \gls{pbs} and
|
|
|
|
|
autoclaved. All subsequent steps were done aseptically, and all reactions were
|
|
|
|
|
carried out at \SI{20}{\mg\per\ml} carriers at room temperature and agitated
|
|
|
|
|
using an orbital shaker with a \SI{3}{\mm} orbit diameter. After autoclaving,
|
|
|
|
|
the microcarriers were washed using sterile \gls{pbs} three times in a 10:1
|
|
|
|
|
volume ratio. \gls{snb} (Thermo Fisher 21217) was dissolved at approximately
|
|
|
|
|
\SI{10}{\micro\molar} in sterile ultrapure water, and the true concentration was
|
|
|
|
|
then determined using the \gls{haba} assay (see below).
|
|
|
|
|
\SI{5}{\ul\of{\ab}\per\mL} \gls{pbs} was added to carrier suspension and allowed
|
|
|
|
|
to react for \SI{60}{\minute} at \SI{700}{\rpm} of agitation. After the
|
|
|
|
|
reaction, the amount of biotin remaining in solution was quantified using the
|
|
|
|
|
\gls{haba} assay (see below). The carriers were then washed three times, which
|
|
|
|
|
entailed adding sterile \gls{pbs} in a 10:1 volumetric ratio, agitating at
|
|
|
|
|
\SI{900}{\rpm} for \SI{10}{\minute}, adding up to a 15:1 volumetric ratio
|
|
|
|
|
(relative to reaction volume) of sterile \gls{pbs}, centrifuging at
|
|
|
|
|
\SI{1000}{\gforce} for \SI{1}{\minute}, and removing all liquid back down to the
|
|
|
|
|
reaction volume.
|
|
|
|
|
|
|
|
|
|
To coat with \gls{stp}, \SI{40}{\ug\per\mL} \gls{stp} (Jackson Immunoresearch
|
|
|
|
|
016-000-114) was added and allowed to react for \SI{60}{\minute} at
|
|
|
|
|
\SI{700}{RPM} of agitation. After the reaction, supernatant was taken for the
|
|
|
|
|
\gls{bca} assay, and the carriers were washed analogously to the previous wash
|
|
|
|
|
step to remove the biotin, except two washes were done and the agitation time
|
|
|
|
|
was \SI{30}{\minute}. Biotinylated \glspl{mab} against human CD3 (Biolegend
|
|
|
|
|
317320) and CD28 (Biolegend 302904) were combined in a 1:1 mass ratio and added
|
|
|
|
|
to the carriers at \SI{0.2}{\ug\of{\ab}\per\mg\of{\dms}}. Along with the
|
|
|
|
|
\glspl{mab}, sterile \gls{bsa} (Sigma A9576) was added to a final concentration
|
|
|
|
|
of \SI{2}{\percent} in order to prevent non-specific binding of the antibodies
|
|
|
|
|
to the reaction tubes. \glspl{mab} were allowed to bind to the carriers for
|
|
|
|
|
\SI{60}{\minute} with \SI{700}{\rpm} agitation. After binding, supernatants were
|
|
|
|
|
sampled to quantify remaining antibody concentration using an \anti{\gls{igg}}
|
|
|
|
|
\gls{elisa} kit (Abcam 157719). Fully functionalized \glspl{dms} were washed in
|
|
|
|
|
sterile \gls{pbs} analogous to the previous washing step to remove excess
|
|
|
|
|
\gls{stp}. They were washed once again in the cell culture media to be used for
|
|
|
|
|
the T cell expansion.
|
|
|
|
|
|
|
|
|
|
The concentration of the final \gls{dms} suspension was found by taking a
|
|
|
|
|
\SI{50}{\uL} sample, plating in a well, and imaging the entire well. The image
|
|
|
|
|
was then manually counted to obtain a concentration. Surface area for
|
|
|
|
|
\si{\ab\per\um\squared} was calculated using the properties for \gls{cus} and
|
|
|
|
|
\gls{cug} as given by the manufacturer {Table X}.
|
|
|
|
|
|
|
|
|
|
%TODO this bit belongs in the next aim
|
|
|
|
|
% In the case of the \gls{doe} experiment where
|
|
|
|
|
% variable mAb surface density was utilized, the anti-CD3/anti-CD28 mAb mixture
|
|
|
|
|
% was further combined with a biotinylated isotype control to reduce the overall
|
|
|
|
|
% fraction of targeted mAbs (for example the 60\% mAb surface density corresponded
|
|
|
|
|
% to 3 mass parts anti-CD3, 3 mass parts anti-CD8, and 4 mass parts isotype
|
|
|
|
|
% control).
|
|
|
|
|
|
|
|
|
|
\subsection{dms quality control assays}
|
|
|
|
|
|
|
|
|
|
Biotin was quantified using the \gls{haba} assay (\gls{haba}/avidin premix from
|
|
|
|
|
Sigma as product H2153-1VL). In the case of quantifying sulfo-NHS-biotin prior
|
|
|
|
|
to adding it to the microcarriers, the sample volume was quenched in a 1:1
|
|
|
|
|
volumetric ratio with \SI{1}{\molar} NaOH and allowed to react for
|
|
|
|
|
\SI{1}{\minute} in order to prevent the reactive ester linkages from binding to
|
|
|
|
|
the avidin proteins in the \gls{haba}/avidin premix. All quantifications of
|
|
|
|
|
\gls{haba} were performed on an Eppendorf D30 Spectrophotometer using \SI{70}{\ul}
|
|
|
|
|
uCuvettes (BrandTech 759200). The extinction coefficient at \SI{500}{\nm} for
|
|
|
|
|
\gls{haba}/avidin was assumed to be \SI{34000}{\per\cm\per\molar}.
|
|
|
|
|
|
|
|
|
|
\gls{stp} binding to the carriers was quantified indirectly using a \gls{bca}
|
|
|
|
|
kit (Thermo Fisher 23227) according to the manufacturer’s instructions, with the
|
|
|
|
|
exception that the standard curve was made with known concentrations of purified
|
|
|
|
|
\gls{stp} instead of \gls{bsa}. Absorbance at \SI{592}{\nm} was
|
|
|
|
|
quantified using a Biotek plate reader.
|
|
|
|
|
|
|
|
|
|
\Gls{mab} binding to the microcarriers was quantified indirectly using an
|
|
|
|
|
\gls{elisa} assay per the manufacturer’s instructions, with the exception that
|
|
|
|
|
the same antibodies used to coat the carriers were used as the standard for the
|
|
|
|
|
\gls{elisa} standard curve.
|
|
|
|
|
|
|
|
|
|
Open biotin binding sites on the \glspl{dms} after \gls{stp} coating was
|
|
|
|
|
quantified indirectly using FITC-biotin (Thermo Fisher B10570). Briefly,
|
|
|
|
|
\SI{400}{\pmol\per\ml} FITC-biotin were added to \gls{stp}-coated carriers and
|
|
|
|
|
allowed to react for 20 min at room temperature under constant agitation. The
|
|
|
|
|
supernatant was quantified against a standard curve of FITC-biotin using a
|
|
|
|
|
Biotek plate reader.
|
|
|
|
|
|
|
|
|
|
\Gls{stp} binding was verified after the \gls{stp}-binding step visually by
|
|
|
|
|
adding biotin-FITC to the \gls{stp}-coated \glspl{dms}, resuspending in 1\%
|
|
|
|
|
agarose gel, and imaging on a lightsheet microscope (Zeiss Z.1). \Gls{mab}
|
|
|
|
|
binding was verified visually by first staining with \anti{gls{igg}}-FITC
|
|
|
|
|
(Biolegend 406001), incubating for \SI{30}{\minute}, washing with \gls{pbs}, and
|
|
|
|
|
imaging on a confocal microscope.
|
|
|
|
|
|
|
|
|
|
\subsection{t cell culture}
|
|
|
|
|
|
|
|
|
|
Cryopreserved primary human T cells were either obtained as sorted CD3
|
|
|
|
|
subpopulations (Astarte Biotech) or isolated from \glspl{pbmc} (Zenbio) using a
|
|
|
|
|
negative selection \gls{macs} kit for the CD3 subset (Miltenyi Biotech
|
|
|
|
|
130-096-535). T cells were activated using \glspl{dms} or \SI{3.5}{\um} CD3/CD28
|
|
|
|
|
magnetic beads (Miltenyi Biotech 130-091-441). In the case of beads, T cells
|
|
|
|
|
were activated at the manufacturer recommended cell:bead ratio of 2:1. In the
|
|
|
|
|
case of \glspl{dms}, cells were activated using \SI{2500}{\dms\per\cm\squared}
|
|
|
|
|
unless otherwise noted. Initial cell density was
|
|
|
|
|
\SIrange{2e6}{2.5e6}{\cell\per\ml} to in a 96 well plate with \SI{300}{\ul}
|
|
|
|
|
volume. All media was serum-free Cell Therapy Systems OpTmizer (Thermo Fisher)
|
|
|
|
|
or TexMACS (Miltentyi Biotech 170-076-307) supplemented with
|
|
|
|
|
\SIrange{100}{400}{\IU\per\ml} \gls{rhil2} (Peprotech 200-02). Cell cultures
|
|
|
|
|
were expanded for \SI{14}{\day} as counted from the time of initial seeding and
|
|
|
|
|
activation. Cell counts and viability were assessed using trypan blue or
|
|
|
|
|
\gls{aopi} and a Countess Automated Cell Counter (Thermo Fisher). Media was
|
|
|
|
|
added to cultures every \SIrange{2}{3}{\day} depending on media color or a
|
|
|
|
|
\SI{300}{\mg\per\deci\liter} minimum glucose threshold. Media glucose was
|
|
|
|
|
measured using a ChemGlass glucometer.
|
|
|
|
|
|
|
|
|
|
% this belongs in aim 2
|
|
|
|
|
% In order to remove \glspl{dms} from
|
|
|
|
|
% culture, collagenase D (Sigma Aldrich) was sterile filtered in culture media and
|
|
|
|
|
% added to a final concentration of \SI{50}{\ug\per\ml} during media addition.
|
|
|
|
|
|
|
|
|
|
Cells on the \glspl{dms} were visualized by adding \SI{0.5}{\ul} \gls{stp}-PE
|
|
|
|
|
(Biolegend 405204) and \SI{2}{ul} anti-CD45-AF647 (Biolegend 368538), incubating
|
|
|
|
|
for an hour, and imaging on a spinning disk confocal microscope.
|
|
|
|
|
|
|
|
|
|
\subsection{chemotaxis assay}
|
|
|
|
|
|
|
|
|
|
Migratory function was assayed using a transwell chemotaxis assay as previously
|
|
|
|
|
described62. Briefly, \SI{3e5}{\cell} were loaded into a transwell plate
|
|
|
|
|
(\SI{5}{\um} pore size, Corning) with the basolateral chamber loaded with
|
|
|
|
|
\SI{600}{\ul} media and 0, 250, or \SI{1000}{\ng\per\mL} CCL21 (Peprotech
|
|
|
|
|
250-13). The plate was incubated for \SI{4}{\hour} after loading, and the
|
|
|
|
|
basolateral chamber of each transwell was quantified for total cells using
|
|
|
|
|
countbright beads (Thermo Fisher C36950). The final readout was normalized using
|
|
|
|
|
the \SI{0}{\ng\per\mL} concentration as background.
|
|
|
|
|
|
|
|
|
|
\subsection{degranulation assay}
|
|
|
|
|
|
|
|
|
|
Cytotoxicity of expanded CAR T cells was assessed using a degranulation assay as
|
|
|
|
|
previously described63. Briefly, \num{3e5} T cells were incubated with
|
|
|
|
|
\num{1.5e5} target cells consisting of either K562 wild type cells (ATCC) or
|
|
|
|
|
CD19- expressing K562 cells transformed with \gls{crispr} (kindly provided by Dr.\
|
|
|
|
|
Yvonne Chen, UCLA)64. Cells were seeded in a flat bottom 96 well plate with
|
|
|
|
|
\SI{1}{\ug\per\ml} anti-CD49d (eBioscience 16-0499-81), \SI{2}{\micro\molar}
|
|
|
|
|
monensin (eBioscience 00-4505-51), and \SI{1}{\ug\per\ml} anti-CD28 (eBioscience
|
|
|
|
|
302914) (all \glspl{mab} functional grade) with \SI{250}{\ul} total volume.
|
|
|
|
|
After \SI{4}{\hour} incubation at \SI{37}{\degreeCelsius}, cells were stained
|
|
|
|
|
for CD3, CD4, and CD107a and analyzed on a BD LSR Fortessa. Readout was
|
|
|
|
|
calculated as the percent \cdp{107a} cells of the total CD8 fraction.
|
|
|
|
|
|
|
|
|
|
\subsection{car expression}
|
|
|
|
|
|
|
|
|
|
% TODO add acronym for PE
|
|
|
|
|
\gls{car} expression was quantified as previously described65. Briefly, cells
|
|
|
|
|
were washed once and stained with biotinylated Protein L (Thermo Fisher 29997).
|
|
|
|
|
After a subsequent wash, cells were stained with PE-\gls{stp} (Biolegend
|
|
|
|
|
405204), washed again, and analyzed on a BD Accuri. Readout was percent PE+
|
|
|
|
|
cells as compared to secondary controls (PE-\gls{stp} with no Protein L).
|
|
|
|
|
|
|
|
|
|
\subsection{car plasmid and lentiviral transduction}
|
|
|
|
|
|
|
|
|
|
The anti-CD19-CD8-CD137-CD3z \gls{car} with the EF1$\upalpha$ promotor29 was
|
|
|
|
|
synthesized (Aldevron) and subcloned into a FUGW lentiviral transfer plasmid
|
|
|
|
|
(Emory Viral Vector Core). Lentiviral vectors were synthesized by the Emory
|
|
|
|
|
Viral Vector Core or the Cincinnati Children's Hospital Medical Center Viral
|
|
|
|
|
Vector Core. To transduce primary human T cells, retronectin (Takara T100A) was
|
|
|
|
|
coated onto non-TC treated 96 well plates and used to immobilize lentiviral
|
|
|
|
|
vector particles according to the manufacturer's instructions. Briefly,
|
|
|
|
|
retronectin solution was adsorbed overnight at \SI{4}{\degreeCelsius} and
|
|
|
|
|
blocked the next day using \gls{bsa}. Prior to transduction, lentiviral
|
|
|
|
|
supernatant was spinoculated at \SI{2000}{\gforce} for \SI{2}{\hour} at
|
|
|
|
|
\SI{4}{\degreeCelsius}. T cells were activated in 96 well plates using beads or
|
|
|
|
|
DMSs for \SI{24}{\hour}, and then cells and beads/\glspl{dms} were transferred
|
|
|
|
|
onto lentiviral vector coated plates and incubated for another \SI{24}{\hour}.
|
|
|
|
|
Cells and beads/\glspl{dms} were removed from the retronectin plates using
|
|
|
|
|
vigorous pipetting and transferred to another 96 well plate wherein expansion
|
|
|
|
|
continued.
|
|
|
|
|
|
|
|
|
|
% TODO add statistics section (anova, regression, and causal inference)
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{results}
|
|
|
|
|
\section{discussion}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\chapter{aim 2}\label{aim2}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{introduction}
|
|
|
|
|
\section{methods}
|
|
|
|
|
\section{results}
|
|
|
|
|
\section{discussion}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\chapter{aim 3}\label{aim3}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{introduction}
|
|
|
|
|
\section{methods}
|
|
|
|
|
\section{results}
|
|
|
|
|
\section{discussion}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
\chapter{conclusions and future work}\label{conclusions}
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{conclusions}
|
|
|
|
|
\section{future work}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\onecolumn
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
% TODO some people put appendices here....not sure if I need to
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter{References}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\renewcommand{\section}[2]{} % noop the original bib section header
|
|
|
|
|
|
2021-07-22 13:14:35 -04:00
|
|
|
|
\bibliography{references}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\bibliographystyle{naturemag}
|
|
|
|
|
|
|
|
|
|
\end{document}
|