ADD figs to aim 2a
This commit is contained in:
parent
e329f072db
commit
4682a2693e
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 152 KiB |
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 442 KiB |
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 113 KiB |
|
@ -1550,6 +1550,77 @@ provide these benefits.
|
|||
\section{introduction}
|
||||
\section{methods}
|
||||
\section{results}
|
||||
|
||||
\subsection{DOE shows optimal conditions for expanded potent T cells}
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
\includegraphics{../figures/modeling_overview.png}
|
||||
\phantomsubcaption\label{fig:mod_overview_flow}
|
||||
\phantomsubcaption\label{fig:mod_overview_doe}
|
||||
|
||||
\endgroup
|
||||
\caption[Modeling Overview]
|
||||
{Overview of modeling experiments.
|
||||
\subcap{fig:mod_overview_flow}{Relationship
|
||||
between \gls{doe} experiments and AI driven prediction. \glspl{doe} will
|
||||
be used to determine optimal process input conditions, and longitudinal
|
||||
multiomics data will be used to fit predictive models. Together, these
|
||||
will reveal predictive species that may be used for \glspl{cqa} and
|
||||
\glspl{cpp}.}
|
||||
\subcap{fig:mod_overview_doe}{Overview of the two \gls{doe} experiments; the
|
||||
initial \gls{doe} is given by the blue points and the augmented \gls{doe}
|
||||
is given by the blue points.}
|
||||
}
|
||||
\label{fig:mod_overview}
|
||||
\end{figure*}
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
\includegraphics{../figures/doe_responses.png}
|
||||
\phantomsubcaption\label{fig:doe_responses_mem}
|
||||
\phantomsubcaption\label{fig:doe_responses_cd4}
|
||||
|
||||
\endgroup
|
||||
\caption[T cell optimization through Design of Experiments]
|
||||
{\gls{doe} methodology reveals optimal conditions for expanding T cell
|
||||
subsets. Responses vs IL2 concentration, \gls{dms} concentration, and
|
||||
functional \gls{mab} percentage are shown for
|
||||
\subcap{fig:doe_responses_mem}{total \ptmem{} T cells} and
|
||||
\subcap{fig:doe_responses_cd4}{total \pth{} T cells}. Each point represents
|
||||
one run.
|
||||
}
|
||||
\label{fig:doe_responses}
|
||||
\end{figure*}
|
||||
|
||||
% DOE regression tables
|
||||
|
||||
% TODO this section header sucks
|
||||
\subsection{AI modeling reveals highly predictive species}
|
||||
|
||||
% model summary table
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
\includegraphics{../figures/modeling_flower.png}
|
||||
\phantomsubcaption\label{fig:mod_flower_48r}
|
||||
\phantomsubcaption\label{fig:mod_flower_cd4}
|
||||
|
||||
\endgroup
|
||||
\caption[Data-Driven \gls{cqa} identification]
|
||||
{Data-driven modeling using techniques with regularization reveals species
|
||||
predictive species which are candidates for \glspl{cqa}. Flower plots are
|
||||
shown for \subcap{fig:mod_flower_48r}{CD4:CD8 ratio} and
|
||||
\subcap{fig:mod_flower_cd4}{total \ptmemh{} cells}. The left and right
|
||||
columns includes models that were trained only on the secretome and
|
||||
metabolome respectively. Each flower on each plot represents one model,
|
||||
moving toward the center indicates higher agreement between models.}
|
||||
\label{fig:mod_flower}
|
||||
\end{figure*}
|
||||
|
||||
\section{discussion}
|
||||
|
||||
\chapter{aim 2b}\label{aim2b}
|
||||
|
@ -1615,7 +1686,6 @@ between survival groups.
|
|||
\label{fig:mouse_dosing_overview}
|
||||
\end{figure*}
|
||||
|
||||
|
||||
\begin{table}[!h] \centering
|
||||
\caption{Results for \gls{car} T cell \invivo{} dose study}
|
||||
\label{tab:mouse_dosing_results}
|
||||
|
|
Loading…
Reference in New Issue