function microcarrier_diffusion_washing() % initial/reaction volume for carriers (cm^3) V_b0 = 1; disp(['###Biotin washing###', sprintf('\n')]) n_biotin = 10; % nmol biotin remaining after attachment D_biotin = 5.0e-6; % diffusion coeff (cm^2/s) carrier_stages(V_b0, 3, n_biotin, D_biotin) disp(['###Streptavidin washing###', sprintf('\n')]) m_stp = 15; % ug stp remaining after attachment n_stp = m_stp / 55000 * 1000; D_stp = 6.2e-7; % diffusion coeff (cm^2/s) carrier_stages(V_b0, 2, n_stp, D_stp) disp(['###Antibody washing###', sprintf('\n')]) m_Ab = 1; % ug Ab added n_Ab = m_Ab / 150000 * 1000; D_Ab = 4.8e-7; % diffusion coeff (cm^2/s) carrier_stages(V_b0, 2, n_Ab, D_Ab) end function carrier_stages(V_b0, stages, n_L, D_L) % initial concentration of L (nM) C_L = n_L / (V_b0 / 1000); % max fill for 15 ml conical tube is about 10ml at vortex speed = 6 without % splashing the medium (PBS) onto the cap/rim and possibly compromising % sterility and losing carriers % % wash volume, fill up to this to let biotin out of carriers (cm^3) V_wash = 10; % dilution volume, fill up to this to reduce total biotin in solution (cm^3) V_dilution = 15; C_L_bulk = C_L; for i = 1:stages disp([sprintf('\n'), '---Stage ', num2str(i), '---', sprintf('\n')]) [C_L, n_L_carrier, n_L_bulk] = carrier_diffusion_out(V_b0, ... V_wash, C_L, C_L_bulk, D_L); C_L_bulk = C_L*V_wash / V_dilution; n_L_bulk = n_L_bulk * V_b0 / V_dilution; end disp([sprintf('\n'), 'final bulk amount = ' , num2str(n_L_bulk), ' nmol']); disp(['final total amount = ', num2str(n_L_carrier + n_L_bulk), ' nmol']); disp(['overall reduction = ', ... num2str((1 - (n_L_carrier + n_L_bulk) / n_L) * 100), ' %', ... sprintf('\n')]); end function [C_carrier_ave_final, n_Lc_f, n_Lb_f] = ... carrier_diffusion_out(V_b0, V_bf, C_Lc_pw, C_Lb_pw, D_LW) % V_b0: prewash volume of bulk solution (cm^3) % V_bf: wash volume of bulk solution (cm^3) % C_Lc_pw: prewash concentration of ligand in carriers (pmol/cm^3, nM) % C_Lb_pw: prewash concentration of ligand in bulk (pmol/cm^3, nM) % D_LW: ligand diffusion coefficient in water (cm^2/s) % number of microcarriers in bulk volume n = 16000; % geometric diffusion factor of microcarriers geometry = 0.190; % microcarrier radius (cm) R = 0.01275; % apparent ligand diffusion coeff in microcarrier (cm^2/min) D_L_app = D_LW * geometry * 60; % void fraction void = 0.95; % volume occupied by carriers (cm^3) V_c = void * 4 / 3 * pi * R^3 * n; % prewash amount in carriers (nmol) n_Lc_pw = (V_c / 1000) * C_Lc_pw; % prewash amount outside carriers (nmol) n_Lb_pw = ((V_b0 - V_c) / 1000) * C_Lb_pw; t_0 = 0; % initial time (min) t_f = 30; % final time (min) C_Lb0 = n_Lb_pw / ((V_bf - V_c) / 1e3); % initial conc. in bulk (nM) % final conditions (after long time) % we use this calculate an average bulk concentration to create a constant % boundary in the BVP, otherwise we have a to solve a free BVP, % which involves sacrificing a kitten... n_L_trans = (V_bf * n_Lc_pw - V_c * n_Lb_pw) / (V_c + V_bf); % final concentration of ligand in bulk solution (pmol/cm^3, nM) C_Lbf = (n_Lb_pw + n_L_trans) / (V_bf / 1e3); disp(['initial bulk concentration = ', num2str(C_Lb0), ' nM']); disp(['final bulk concentration = ', num2str(C_Lbf), ' nM']); disp(['bulk percent change = ', ... num2str((1 - C_Lb0 / C_Lbf) * 100), '%']); disp(['initial carrier concentration = ', num2str(C_Lc_pw), ' nM']); disp(['initial carrier amount = ', num2str(n_Lc_pw), ' nmol']); disp(['initial bulk amount = ', ... num2str(n_Lb_pw), ' nmol', sprintf('\n')]); m = 2; % spherical r = linspace(0, R, 50); t_f = 1; tolerance = 0.1; % iterate until center and outside conc are within this increment = 1; % length of time increments (min) diff = 1000000; % init to some huge number while diff > tolerance t = linspace(t_0, t_f, 50); Y = pdepe(m,@pde,@init,@bound,r,t); C = Y(:,:,1); % final concentration in center of carrier at final time C_f_center = C(end,1); % test to see how far off the center is from bulk diff = C_f_center / C_Lbf - 1; t_f = t_f + increment; end % average final concentration of carriers C_carrier_ave_final = (C_f_center + C_Lbf) / 2; % nmol still remaining in carriers n_Lc_f = C_carrier_ave_final * (V_c / 1000); % final nmol in bulk n_Lb_f = n_Lb_pw + (n_Lc_pw - n_Lc_f); % percent nmol of ligand removed from carriers perc_removed = (1 - n_Lc_f / n_Lc_pw) * 100; % amount actually transferred over theoretical efficiency = (n_Lc_pw - n_Lc_f) / n_L_trans * 100; disp(['final time to equilibrium = ', num2str(t_f), ' min']); disp(['Total removed from carriers = ', num2str(n_Lc_pw - n_Lc_f), ' nmol']); disp(['Total remaining in carriers = ', num2str(n_Lc_f), ' nmol']); disp(['Total remaining in bulk = ', num2str(n_Lb_f), ' nmol']); disp(['Percent removed from carriers = ', num2str(perc_removed), ' %']); function [c, f, s] = pde(r, t, c, DcDr) c = 1; f = D_L_app * DcDr; s = 0; end function u0 = init(r) u0 = C_Lc_pw; end function [pl,ql,pr,qr] = bound(rl,cl,rr,cr,t) pl = 0; ql = 1; % assume that the concentration boundary % is the average of the initial and % theoretical final concentration in bulk pr = cr - (C_Lbf + C_Lbf)/2; qr = 0; end end