Compare commits

..

No commits in common. "master" and "update_dhall_types" have entirely different histories.

17 changed files with 2515 additions and 3791 deletions

View File

@ -2,21 +2,20 @@
module Main (main) where
import Control.Concurrent
import Control.Monad.Except
import Control.Monad.IO.Rerunnable
import Control.Monad.Logger
import Data.Bitraversable
-- import Data.Hashable
import Control.Monad.Reader
import qualified Data.Text.IO as TI
import qualified Database.Esqueleto.Experimental as E
import qualified Dhall hiding (double, record)
import Internal.Database
import Internal.Types.Main
import Database.Persist.Monad
import Internal.Config
import Internal.Database.Ops
import Internal.Insert
import Internal.Types
import Internal.Utils
import Options.Applicative
import RIO
import RIO.FilePath
-- import qualified RIO.Map as M
import qualified RIO.Text as T
main :: IO ()
@ -30,26 +29,14 @@ main = parse =<< execParser o
<> header "pwncash - your budget, your life"
)
type ConfigPath = FilePath
type BudgetPath = FilePath
type HistoryPath = FilePath
data Options = Options !ConfigPath !Mode
data Options = Options FilePath Mode
data Mode
= Reset
| DumpCurrencies
| DumpAccounts
| DumpAccountKeys
| Sync !SyncOptions
data SyncOptions = SyncOptions
{ syncBudgets :: ![BudgetPath]
, syncHistories :: ![HistoryPath]
, syncThreads :: !Int
}
| Sync
configFile :: Parser FilePath
configFile =
@ -67,7 +54,7 @@ options =
<|> getConf dumpCurrencies
<|> getConf dumpAccounts
<|> getConf dumpAccountKeys
<|> getConf sync_
<|> getConf sync
where
getConf m = Options <$> configFile <*> m
@ -108,43 +95,14 @@ dumpAccountKeys =
<> help "Dump all account keys/aliases"
)
sync_ :: Parser Mode
sync_ =
sync :: Parser Mode
sync =
flag'
Sync
( long "sync"
<> short 'S'
<> help "Sync config to database"
)
<*> syncOptions
syncOptions :: Parser SyncOptions
syncOptions =
SyncOptions
<$> many
( strOption
( long "budget"
<> short 'b'
<> metavar "BUDGET"
<> help "path to a budget config"
)
)
<*> many
( strOption
( long "history"
<> short 'H'
<> metavar "HISTORY"
<> help "path to a history config"
)
)
<*> option
auto
( long "threads"
<> short 't'
<> metavar "THREADS"
<> value 1
<> help "number of threads for syncing"
)
parse :: Options -> IO ()
parse (Options c Reset) = do
@ -153,8 +111,7 @@ parse (Options c Reset) = do
parse (Options c DumpAccounts) = runDumpAccounts c
parse (Options c DumpAccountKeys) = runDumpAccountKeys c
parse (Options c DumpCurrencies) = runDumpCurrencies c
parse (Options c (Sync SyncOptions {syncBudgets, syncHistories, syncThreads})) =
runSync syncThreads c syncBudgets syncHistories
parse (Options c Sync) = runSync c
runDumpCurrencies :: MonadUnliftIO m => FilePath -> m ()
runDumpCurrencies c = do
@ -192,34 +149,44 @@ runDumpAccountKeys c = do
ar <- accounts <$> readConfig c
let ks =
paths2IDs $
fmap (double . accountRFullpath . E.entityVal) $
fst $
indexAcntRoot ar
fmap (double . fst) $
concatMap (t3 . uncurry tree2Records) $
flattenAcntRoot ar
mapM_ (uncurry printPair) ks
where
printPair i p = do
liftIO $ putStrLn $ T.unpack $ T.concat [acntPath2Text p, ": ", unAcntID i]
liftIO $ putStrLn $ T.unpack $ T.concat [acntPath2Text p, ": ", i]
t3 (_, _, x) = x
double x = (x, x)
runSync :: Int -> FilePath -> [FilePath] -> [FilePath] -> IO ()
runSync threads c bs hs = do
setNumCapabilities threads
runSync :: FilePath -> IO ()
runSync c = do
config <- readConfig c
(bs', hs') <-
fmap (bimap concat concat . partitionEithers) $
pooledMapConcurrentlyN threads (bimapM readDhall readDhall) $
(Left <$> bs) ++ (Right <$> hs)
let (hTs, hSs) = splitHistory $ statements config
pool <- runNoLoggingT $ mkPool $ sqlConfig config
setNumCapabilities 1
handle err $ sync pool root config bs' hs'
handle err $ do
-- _ <- askLoggerIO
-- get the current DB state
s <- runSqlQueryT pool $ do
runMigration migrateAll
fmap (\f -> f $ takeDirectory c) $ liftIOExceptT $ getDBState config
-- read desired statements from disk
bSs <- flip runReaderT s $ catMaybes <$> mapM readHistStmt hSs
-- update the DB
runSqlQueryT pool $ withTransaction $ flip runReaderT s $ do
let hTransRes = mapErrors insertHistTransfer hTs
let bgtRes = mapErrors insertBudget $ budget config
updateDBState -- TODO this will only work if foreign keys are deferred
res <- runExceptT $ do
mapM_ (uncurry insertHistStmt) bSs
combineError hTransRes bgtRes $ \_ _ -> ()
rerunnableIO $ fromEither res
where
root = takeDirectory c
err (AppException es) = do
err (InsertException es) = do
liftIO $ mapM_ TI.putStrLn $ concatMap showError es
exitFailure
readConfig :: MonadUnliftIO m => FilePath -> m Config
readConfig = fmap unfix . readDhall
readDhall :: Dhall.FromDhall a => MonadUnliftIO m => FilePath -> m a
readDhall confpath = liftIO $ Dhall.inputFile Dhall.auto confpath
-- showBalances

View File

@ -25,13 +25,12 @@ source-repository head
library
exposed-modules:
Internal.Budget
Internal.Database
Internal.History
Internal.Types.Database
Internal.Types.Dhall
Internal.Types.Main
Internal.Types.TH
Internal.Config
Internal.Database.Ops
Internal.Insert
Internal.Statement
Internal.TH
Internal.Types
Internal.Utils
other-modules:
Paths_budget
@ -75,8 +74,7 @@ library
ViewPatterns
ghc-options: -Wall -Wcompat -Widentities -Wincomplete-record-updates -Wincomplete-uni-patterns -Wredundant-constraints -Wpartial-fields -Werror -O2
build-depends:
Decimal >=0.5.2
, base >=4.12 && <10
base >=4.12 && <10
, cassava
, conduit >=1.3.4.2
, containers >=0.6.4.1
@ -145,8 +143,7 @@ executable pwncash
ViewPatterns
ghc-options: -Wall -Wcompat -Widentities -Wincomplete-record-updates -Wincomplete-uni-patterns -Wredundant-constraints -Wpartial-fields -Werror -O2 -threaded
build-depends:
Decimal >=0.5.2
, base >=4.12 && <10
base >=4.12 && <10
, budget
, cassava
, conduit >=1.3.4.2

View File

@ -278,124 +278,49 @@ let DatePat =
-}
< Cron : CronPat.Type | Mod : ModPat.Type >
let TxAmount1_ =
\(re : Type) ->
{ a1Column : Text
, a1Fmt :
{-
Format of the amount field. Must include three fields for the
sign, numerator, and denominator of the amount.
-}
re
}
let TxAmount1 =
{ Type = TxAmount1_ Text
, default = { a1Column = "Amount", a1Fmt = "([-+])?([0-9\\.]+)" }
}
let TxAmount2_ =
\(re : Type) ->
{ a2Positive : Text
, a2Negative : Text
, a2Fmt :
{-
Format of the amount field. Must include two fields for the
numerator and denominator of the amount.
-}
re
}
let TxAmount2 =
{ Type = TxAmount2_ Text
, default =
{ a2Positive = "Deposit"
, a2Negative = "Withdraw"
, a2Fmt = "([0-9\\.]+)"
}
}
let TxAmountSpec_ =
\(re : Type) ->
< AmountSingle : TxAmount1_ re | AmountDual : TxAmount2_ re >
let TxOpts_ =
{-
Additional metadata to use when parsing a statement
-}
\(re : Type) ->
{ toDate :
{-
Column title for date
-}
Text
, toAmount :
{-
Column title for amount
-}
TxAmountSpec_ re
, toDesc :
{-
Column title for description
-}
Text
, toOther :
{-
Titles of other columns to include; these will be available in
a map for use in downstream processing (see 'Field')
-}
List Text
, toDateFmt :
{-
Format of the date field as specified in the
Data.Time.Format.formattime Haskell function.
-}
Text
, toSkipBlankDate :
{-
Skip line if date field is a blank
-}
Bool
, toSkipBlankAmount :
{-
Skip line if amount field(s) is(are) a blank
-}
Bool
, toSkipBlankDescription :
{-
Skip line if description field is a blank
-}
Bool
, toSkipBlankOther :
{-
Skip line if any arbitrary fields are blank (these fields must also
be listed in 'toOther' to be considered)
-}
List Text
, toSkipMissingFields :
{-
Skip line if any fields are missing (this is different from blank;
'missing' means there is no field with name 'X', 'blank' means that
there is a field 'X' and its value is an empty string)
-}
Bool
}
let TxAmountSpec = TxAmountSpec_ Text
let TxOpts =
{ Type = TxOpts_ Text
{- Additional metadata to use when parsing a statement -}
{ Type =
{ toDate :
{-
Column title for date
-}
Text
, toAmount :
{-
Column title for amount
-}
Text
, toDesc :
{-
Column title for description
-}
Text
, toOther :
{-
Titles of other columns to include; these will be available in
a map for use in downstream processing (see 'Field')
-}
List Text
, toDateFmt :
{-
Format of the date field as specified in the
Data.Time.Format.formattime Haskell function.
-}
Text
, toAmountFmt :
{- Format of the amount field. Must include three fields for the
sign, numerator, and denominator of the amount.
-}
Text
}
, default =
{ toDate = "Date"
, toAmount = TxAmountSpec.AmountSingle TxAmount1::{=}
, toAmount = "Amount"
, toDesc = "Description"
, toOther = [] : List Text
, toDateFmt = "%0m/%0d/%Y"
, toSkipBlankDate = False
, toSkipBlankAmount = False
, toSkipBlankDescription = False
, toSkipBlankOther = [] : List Text
, toSkipMissingFields = False
, toAmountFmt = "([-+])?([0-9]+)\\.?([0-9]+)?"
}
}
@ -477,45 +402,9 @@ let EntryNumGetter =
LookupN: lookup the value from a field
ConstN: a constant value
AmountN: the value of the 'Amount' column times a scaling factor
BalanceN: the amount required to make the target account reach a balance
PercentN: the amount required to make an account reach a given percentage
AmountN: the value of the 'Amount' column
-}
< LookupN : Text
| ConstN : Double
| AmountN : Double
| BalanceN : Double
| PercentN : Double
>
let LinkedNumGetter =
{-
Means to get a numeric value from another entry
-}
{ Type =
{ lngIndex :
{-
Index of the entry to link.
-}
Natural
, lngScale :
{-
Factor by which to multiply the value of the linked entry.
-}
Double
}
, default = { lngScale = 1.0, lngIndex = 0 }
}
let LinkedEntryNumGetter =
{-
Means to get a numeric value from a statement row or another entry getter.
Linked: a number referring to the entry on the 'from' side of the
transaction (with 0 being the primary entry)
Getter: a normal getter
-}
< Linked : LinkedNumGetter.Type | Getter : EntryNumGetter >
< LookupN : Text | ConstN : Double | AmountN >
let EntryTextGetter =
{-
@ -554,6 +443,7 @@ let Entry =
-}
\(a : Type) ->
\(v : Type) ->
\(c : Type) ->
\(t : Type) ->
{ eAcnt :
{-
@ -565,6 +455,11 @@ let Entry =
Pertains to value for this entry.
-}
v
, eCurrency :
{-
Pertains to value for this entry.
-}
c
, eComment :
{-
A short description of this entry (if none, use a blank string)
@ -579,107 +474,35 @@ let Entry =
let EntryGetter =
{-
Means for getting an entry from a given row in a statement (debit side)
-}
\(n : Type) ->
{ Type = Entry EntryAcntGetter n TagID
, default = { eComment = "", eTags = [] : List TagID }
}
let FromEntryGetter =
{-
Means for getting an entry from a given row in a statement (debit side)
-}
EntryGetter EntryNumGetter
let ToEntryGetter =
{-
Means for getting an entry from a given row in a statement (credit side)
-}
EntryGetter LinkedEntryNumGetter
let TxHalfGetter =
{-
Means of transforming one row in a statement to either the credit or debit
half of a transaction
-}
\(e : Type) ->
{ Type =
{ thgAcnt :
{-
Account from which this transaction will be balanced. The value
of the transaction will be assigned to this account unless
other entries are specified (see below).
This account (and its associated entry) will be denoted
'primary'.
-}
EntryAcntGetter
, thgEntries :
{-
Means of getting additional entries from which this transaction
will be balanced. If this list is empty, the total value of the
transaction will be assigned to the value defined by 'tsgAcnt'.
Otherwise, the entries specified here will be added to this side
of this transaction, and their sum value will be subtracted from
the total value of the transaction and assigned to 'tsgAcnt'.
This is useful for situations where a particular transaction
denotes values that come from multiple subaccounts.
-}
List e
, thgComment :
{-
Comment for the primary entry
-}
Text
, thgTags :
{-
Tags for the primary entry
-}
List TagID
}
, default =
{ thgTags = [] : List TagID
, thgComment = ""
, thgEntries = [] : List e
}
}
let FromTxHalfGetter = TxHalfGetter FromEntryGetter.Type
let ToTxHalfGetter = TxHalfGetter ToEntryGetter.Type
let TxSubGetter =
{-
A means for transforming one row in a statement to a transaction
Means for getting an entry from a given row in a statement
-}
{ Type =
{ tsgValue : EntryNumGetter
, tsgCurrency : EntryCurGetter
, tsgFrom : (TxHalfGetter FromEntryGetter.Type).Type
, tsgTo : (TxHalfGetter ToEntryGetter.Type).Type
}
, default = { tsgFrom = TxHalfGetter, tsgTo = TxHalfGetter }
Entry EntryAcntGetter (Optional EntryNumGetter) EntryCurGetter TagID
, default = { eValue = None EntryNumGetter, eComment = "" }
}
let TxGetter =
{-
A means for transforming one row in a statement to a transaction
Note that N-1 entries need to be specified to make a transaction, as the
Nth entry will be balanced with the others.
-}
{ Type =
{ tgFrom : (TxHalfGetter FromEntryGetter.Type).Type
, tgTo : (TxHalfGetter ToEntryGetter.Type).Type
, tgScale : Double
, tgCurrency : EntryCurGetter
, tgOtherEntries : List TxSubGetter.Type
}
, default =
{ tgOtherEntries = [] : List TxSubGetter.Type
, tgFrom = TxHalfGetter
, tgTo = TxHalfGetter
, tgScale = 1.0
}
{ tgEntries :
{-
A means of getting entries for this transaction (minimum 1)
-}
List EntryGetter.Type
, tgCurrency :
{-
Currency against which entries in this transaction will be balanced
-}
EntryCurGetter
, tgAcnt :
{-
Account in which entries in this transaction will be balanced
-}
EntryAcntGetter
}
let StatementParser_ =
@ -719,7 +542,7 @@ let StatementParser_ =
a transaction. If none, don't make a transaction (eg 'skip'
this row in the statement).
-}
Optional TxGetter.Type
Optional TxGetter
, spTimes :
{-
Match at most this many rows; if none there is no limit
@ -736,7 +559,7 @@ let StatementParser_ =
, spVal = ValMatcher::{=}
, spDesc = None Text
, spOther = [] : List (FieldMatcher_ re)
, spTx = None TxGetter.Type
, spTx = None TxGetter
, spTimes = None Natural
, spPriority = +0
}
@ -754,29 +577,7 @@ let Amount =
-}
\(w : Type) ->
\(v : Type) ->
{ Type =
{ amtWhen : w, amtValue : v, amtDesc : Text, amtPriority : Integer }
, default.amtPriority = +0
}
let TransferType =
{-
The type of a budget transfer.
BTFixed: Tranfer a fixed amount
BTPercent: Transfer a percent of the source account to destination
BTTarget: Transfer an amount such that the destination has a given target
value
-}
< TPercent | TBalance | TFixed >
let TransferValue =
{-
Means to determine the value of a budget transfer.
-}
{ Type = { tvVal : Double, tvType : TransferType }
, default.tvType = TransferType.TFixed
}
{ amtWhen : w, amtValue : v, amtDesc : Text }
let Transfer =
{-
@ -789,24 +590,14 @@ let Transfer =
{ transFrom : a
, transTo : a
, transCurrency : c
, transAmounts : List (Amount w v).Type
, transAmounts : List (Amount w v)
}
let TaggedAcnt =
{-
An account with a tag
-}
{ Type = { taAcnt : AcntID, taTags : List TagID }
, default.taTags = [] : List TagID
}
let HistTransfer =
{-
A manually specified historical transfer
-}
Transfer TaggedAcnt.Type CurID DatePat TransferValue.Type
let TransferAmount = Amount DatePat TransferValue.Type
Transfer AcntID CurID DatePat Double
let Statement =
{-
@ -843,6 +634,44 @@ let History =
-}
< HistTransfer : HistTransfer | HistStatement : Statement >
let Exchange =
{-
A currency exchange.
-}
{ xFromCur :
{-
Starting currency of the exchange.
-}
CurID
, xToCur :
{-
Ending currency of the exchange.
-}
CurID
, xAcnt :
{-
account in which the exchange will be documented.
-}
AcntID
, xRate :
{-
The exchange rate between the currencies.
-}
Double
}
let BudgetCurrency =
{-
A 'currency' in the budget; either a fixed currency or an exchange
-}
< NoX : CurID | X : Exchange >
let TaggedAcnt =
{-
An account with a tag
-}
{ taAcnt : AcntID, taTags : List TagID }
let Allocation =
{-
How to allocate a given budget stream. This can be thought of as a Transfer
@ -850,7 +679,12 @@ let Allocation =
-}
\(w : Type) ->
\(v : Type) ->
{ alloTo : TaggedAcnt.Type, alloAmts : List (Amount w v).Type }
{ alloTo : TaggedAcnt
, alloAmts : List (Amount w v)
, alloCur :
{-TODO allow exchanges here-}
CurID
}
let PretaxValue =
{-
@ -945,8 +779,6 @@ let SingleAllocation =
-}
Allocation {}
let SingleAlloAmount = \(v : Type) -> Amount {} v
let MultiAllocation =
{-
An allocation specialized to capturing multiple income streams within a given
@ -955,8 +787,6 @@ let MultiAllocation =
-}
Allocation Interval
let MultiAlloAmount = \(v : Type) -> Amount Interval v
let HourlyPeriod =
{-
Definition for a pay period denominated in hours
@ -1039,62 +869,85 @@ let Income =
This must be an income AcntID, and is the only place income
accounts may be specified in the entire budget.
-}
TaggedAcnt.Type
TaggedAcnt
, incToBal :
{-
The account to which to send the remainder of the income stream
(if any) after all allocations have been applied.
-}
TaggedAcnt.Type
, incPriority : Integer
TaggedAcnt
}
, default =
{ incPretax = [] : List (SingleAllocation PretaxValue)
, incTaxes = [] : List (SingleAllocation TaxValue)
, incPosttaxx = [] : List (SingleAllocation PosttaxValue)
, incPriority = +0
}
}
let AcntMatcher_ =
let AcntSet =
{-
Regex pattern by which matching account ids will be identified
A list of account IDs represented as a set.
-}
\(re : Type) ->
{ Type = { amPat : re, amInvert : Bool }, default.amInvert = False }
{ Type =
{ asList : List AcntID
, asInclude :
{-
If true, tests for account membership in this set will return
true if the account is in the set. Invert this behavior otherwise.
-}
Bool
}
, default = { asList = [] : List AcntID, asInclude = False }
}
let AcntMatcher = AcntMatcher_ Text
let TransferMatcher_ =
let TransferMatcher =
{-
Means to match a transfer (which will be used to "clone" it in some
fashion)
-}
\(re : Type) ->
{ tmFrom : Optional (AcntMatcher_ re).Type
, tmTo : Optional (AcntMatcher_ re).Type
, tmDate :
{-
If given, means to match the date of a transfer.
-}
Optional DateMatcher
, tmVal :
{-
If given, means to match the value of a transfer.
-}
ValMatcher.Type
}
let TransferMatcher =
{ Type = TransferMatcher_ Text
{ Type =
{ tmFrom :
{-
List of accounts (which may be empty) to match with the
starting account in a transfer.
-}
AcntSet.Type
, tmTo :
{-
List of accounts (which may be empty) to match with the
ending account in a transfer.
-}
AcntSet.Type
, tmDate :
{-
If given, means to match the date of a transfer.
-}
Optional DateMatcher
, tmVal :
{-
If given, means to match the value of a transfer.
-}
ValMatcher.Type
}
, default =
{ tmFrom = None AcntMatcher.Type
, tmTo = None AcntMatcher.Type
{ tmFrom = AcntSet.default
, tmTo = AcntSet.default
, tmDate = None DateMatcher
, tmVal = ValMatcher.default
}
}
let BudgetTransferType =
{-
The type of a budget transfer.
BTFixed: Tranfer a fixed amount
BTPercent: Transfer a percent of the source account to destination
BTTarget: Transfer an amount such that the destination has a given target
value
-}
< BTPercent | BTTarget | BTFixed >
let ShadowTransfer =
{-
A transaction analogous to another transfer with given properties.
@ -1103,17 +956,17 @@ let ShadowTransfer =
{-
Source of this transfer
-}
TaggedAcnt.Type
TaggedAcnt
, stTo :
{-
Destination of this transfer.
-}
TaggedAcnt.Type
TaggedAcnt
, stCurrency :
{-
Currency of this transfer.
-}
CurID
BudgetCurrency
, stDesc :
{-
Description of this transfer.
@ -1127,6 +980,7 @@ let ShadowTransfer =
specified in other fields of this type.
-}
TransferMatcher.Type
, stType : BudgetTransferType
, stRatio :
{-
Fixed multipler to translate value of matched transfer to this one.
@ -1134,11 +988,17 @@ let ShadowTransfer =
Double
}
let BudgetTransferValue =
{-
Means to determine the value of a budget transfer.
-}
{ btVal : Double, btType : BudgetTransferType }
let BudgetTransfer =
{-
A manually specified transaction for a budget
-}
HistTransfer
Transfer TaggedAcnt BudgetCurrency DatePat BudgetTransferValue
let Budget =
{-
@ -1158,7 +1018,6 @@ let Budget =
, bgtPosttax : List (MultiAllocation PosttaxValue)
, bgtTransfers : List BudgetTransfer
, bgtShadowTransfers : List ShadowTransfer
, bgtInterval : Optional Interval
}
in { CurID
@ -1180,7 +1039,6 @@ in { CurID
, CronPat
, DatePat
, TxOpts
, TxOpts_
, StatementParser
, StatementParser_
, ValMatcher
@ -1189,13 +1047,10 @@ in { CurID
, FieldMatcher
, FieldMatcher_
, EntryNumGetter
, LinkedEntryNumGetter
, LinkedNumGetter
, Field
, FieldMap
, Entry
, FromEntryGetter
, ToEntryGetter
, EntryGetter
, EntryTextGetter
, EntryCurGetter
, EntryAcntGetter
@ -1206,11 +1061,12 @@ in { CurID
, Budget
, Allocation
, Amount
, TransferMatcher_
, TransferMatcher
, ShadowTransfer
, AcntSet
, BudgetCurrency
, Exchange
, TaggedAcnt
, AccountTree
, Account
, Placeholder
, PretaxValue
@ -1219,29 +1075,13 @@ in { CurID
, TaxProgression
, TaxMethod
, TaxValue
, TransferValue
, TransferType
, BudgetTransferValue
, BudgetTransferType
, TxGetter
, TxSubGetter
, TxHalfGetter
, FromTxHalfGetter
, ToTxHalfGetter
, HistTransfer
, SingleAllocation
, MultiAllocation
, HourlyPeriod
, Period
, PeriodType
, TransferAmount
, MultiAlloAmount
, SingleAlloAmount
, AcntMatcher_
, AcntMatcher
, TxAmountSpec
, TxAmountSpec_
, TxAmount1_
, TxAmount2_
, TxAmount1
, TxAmount2
, BudgetTransfer
}

View File

@ -4,10 +4,18 @@ let List/map =
let T = ./Types.dhall
let nullEntry =
let nullSplit =
\(a : T.EntryAcntGetter) ->
\(v : T.EntryNumGetter) ->
T.FromEntryGetter::{ eAcnt = a, eValue = v }
\(c : T.EntryCurGetter) ->
T.EntryGetter::{ eAcnt = a, eCurrency = c, eTags = [] : List T.TagID }
let nullOpts = T.TxOpts::{=}
let nullVal = T.ValMatcher::{=}
let nullMatch = T.StatementParser::{=}
let nullCron = T.CronPat::{=}
let nullMod =
\(by : Natural) ->
@ -19,22 +27,21 @@ let cron1 =
\(m : Natural) ->
\(d : Natural) ->
T.DatePat.Cron
T.CronPat::{
, cpYear = Some (T.MDYPat.Single y)
, cpMonth = Some (T.MDYPat.Single m)
, cpDay = Some (T.MDYPat.Single d)
}
( nullCron
// { cpYear = Some (T.MDYPat.Single y)
, cpMonth = Some (T.MDYPat.Single m)
, cpDay = Some (T.MDYPat.Single d)
}
)
let matchInf_ = T.StatementParser::{=}
let matchInf_ = nullMatch
let matchInf = \(x : T.TxGetter.Type) -> T.StatementParser::{ spTx = Some x }
let matchInf = \(x : T.TxGetter) -> nullMatch // { spTx = Some x }
let matchN_ = \(n : Natural) -> T.StatementParser::{ spTimes = Some n }
let matchN_ = \(n : Natural) -> nullMatch // { spTimes = Some n }
let matchN =
\(n : Natural) ->
\(x : T.TxGetter.Type) ->
matchInf x // { spTimes = Some n }
\(n : Natural) -> \(x : T.TxGetter) -> matchInf x // { spTimes = Some n }
let match1_ = matchN_ 1
@ -79,45 +86,46 @@ let mRngYMD =
\(r : Natural) ->
T.DateMatcher.In { _1 = T.YMDMatcher.YMD (greg y m d), _2 = r }
let PartEntry = { _1 : T.AcntID, _2 : Double, _3 : Text }
let PartSplit = { _1 : T.AcntID, _2 : Double, _3 : Text }
let partNFrom =
\(ss : List PartEntry) ->
let toEntry =
\(x : PartEntry) ->
T.FromEntryGetter::{
, eAcnt = T.EntryAcntGetter.ConstT x._1
, eValue = T.EntryNumGetter.ConstN x._2
, eComment = x._3
}
let partN =
\(c : T.EntryCurGetter) ->
\(a : T.EntryAcntGetter) ->
\(comment : Text) ->
\(ss : List PartSplit) ->
let toSplit =
\(x : PartSplit) ->
nullSplit (T.EntryAcntGetter.ConstT x._1) c
// { eValue = Some (T.EntryNumGetter.ConstN x._2)
, eComment = x._3
}
in List/map PartEntry T.FromEntryGetter.Type toEntry ss
in [ nullSplit a c // { eComment = comment } ]
# List/map PartSplit T.EntryGetter.Type toSplit ss
let partNTo =
\(ss : List PartEntry) ->
let toEntry =
\(x : PartEntry) ->
T.ToEntryGetter::{
, eAcnt = T.EntryAcntGetter.ConstT x._1
, eValue =
T.LinkedEntryNumGetter.Getter (T.EntryNumGetter.ConstN x._2)
, eComment = x._3
}
let part1 =
\(c : T.EntryCurGetter) ->
\(a : T.EntryAcntGetter) ->
\(comment : Text) ->
partN c a comment ([] : List PartSplit)
in List/map PartEntry T.ToEntryGetter.Type toEntry ss
let part1_ =
\(c : T.EntryCurGetter) ->
\(a : T.EntryAcntGetter) ->
partN c a "" ([] : List PartSplit)
let addDay =
\(x : T.GregorianM) ->
\(d : Natural) ->
{ gYear = x.gmYear, gMonth = x.gmMonth, gDay = d }
let mvP = T.ValMatcher::{ vmSign = Some True }
let mvP = nullVal // { vmSign = Some True }
let mvN = T.ValMatcher::{ vmSign = Some False }
let mvN = nullVal // { vmSign = Some False }
let mvNum = \(x : Natural) -> T.ValMatcher::{ vmNum = Some x }
let mvNum = \(x : Natural) -> nullVal // { vmNum = Some x }
let mvDen = \(x : Natural) -> T.ValMatcher::{ vmDen = Some x }
let mvDen = \(x : Natural) -> nullVal // { vmDen = Some x }
let mvNumP = \(x : Natural) -> mvP // { vmNum = Some x }
@ -127,7 +135,13 @@ let mvDenP = \(x : Natural) -> mvP // { vmDen = Some x }
let mvDenN = \(x : Natural) -> mvN // { vmDen = Some x }
in { cron1
in { nullSplit
, nullMatch
, nullVal
, nullOpts
, nullCron
, nullMod
, cron1
, mY
, mYM
, mYMD
@ -142,8 +156,9 @@ in { cron1
, match1
, greg
, gregM
, partNFrom
, partNTo
, partN
, part1
, part1_
, addDay
, comma = 44
, tab = 9
@ -155,8 +170,6 @@ in { cron1
, mvDen
, mvDenP
, mvDenN
, PartEntry
, nullEntry
, nullMod
, PartSplit
}
/\ T

View File

@ -1,419 +0,0 @@
module Internal.Budget (readBudgetCRUD) where
import Control.Monad.Except
import Data.Decimal hiding (allocate)
import Data.Foldable
import Data.Hashable
import Internal.Types.Main
import Internal.Utils
import RIO hiding (to)
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.NonEmpty as NE
import qualified RIO.Text as T
import RIO.Time
readBudgetCRUD :: (MonadAppError m, MonadFinance m) => PreBudgetCRUD -> m FinalBudgetCRUD
readBudgetCRUD o@CRUDOps {coCreate} = do
bs <- mapM readBudget coCreate
return $ o {coCreate = bs}
readBudget :: (MonadAppError m, MonadFinance m) => Budget -> m (BudgetName, [Tx CommitR])
readBudget
b@Budget
{ bgtLabel
, bgtIncomes
, bgtTransfers
, bgtShadowTransfers
, bgtPretax
, bgtTax
, bgtPosttax
, bgtInterval
} =
do
spanRes <- getSpan
(bgtLabel,) <$> case spanRes of
Nothing -> return []
Just budgetSpan -> do
(intAllos, _) <- combineError intAlloRes acntRes (,)
let res1 = mapErrors (readIncome c intAllos budgetSpan) bgtIncomes
let res2 = expandTransfers c budgetSpan bgtTransfers
combineErrorM (concat <$> res1) res2 $ \is ts ->
addShadowTransfers bgtShadowTransfers (is ++ ts)
where
c = CommitR (CommitHash $ hash b) CTBudget
acntRes = mapErrors isNotIncomeAcnt alloAcnts
intAlloRes = combineError3 pre_ tax_ post_ (,,)
pre_ = sortAllos bgtPretax
tax_ = sortAllos bgtTax
post_ = sortAllos bgtPosttax
sortAllos = liftExcept . mapErrors sortAllo
alloAcnts =
(alloAcnt <$> bgtPretax)
++ (alloAcnt <$> bgtTax)
++ (alloAcnt <$> bgtPosttax)
getSpan = do
globalSpan <- asks (unBSpan . tsBudgetScope)
case bgtInterval of
Nothing -> return $ Just globalSpan
Just bi -> do
localSpan <- liftExcept $ resolveDaySpan bi
return $ intersectDaySpan globalSpan localSpan
sortAllo :: MultiAllocation v -> AppExcept (DaySpanAllocation v)
sortAllo a@Allocation {alloAmts = as} = do
bs <- foldSpan [] $ L.sortOn amtWhen as
return $ a {alloAmts = reverse bs}
where
foldSpan acc [] = return acc
foldSpan acc (x : xs) = do
let start = amtWhen x
res <- case xs of
[] -> resolveDaySpan start
(y : _) -> resolveDaySpan_ (intStart $ amtWhen y) start
foldSpan (x {amtWhen = res} : acc) xs
--------------------------------------------------------------------------------
-- Income
-- TODO this will scan the interval allocations fully each time
-- iteration which is a total waste, but the fix requires turning this
-- loop into a fold which I don't feel like doing now :(
readIncome
:: (MonadAppError m, MonadFinance m)
=> CommitR
-> IntAllocations
-> DaySpan
-> Income
-> m [Tx CommitR]
readIncome
key
(intPre, intTax, intPost)
ds
Income
{ incWhen
, incCurrency
, incFrom = TaggedAcnt {taAcnt = srcAcnt, taTags = srcTags}
, incPretax
, incPosttax
, incTaxes
, incToBal = TaggedAcnt {taAcnt = destAcnt, taTags = destTags}
, incGross
, incPayPeriod
, incPriority
} =
combineErrorM
(combineError incRes nonIncRes (,))
(combineError cpRes dayRes (,))
$ \_ (cp, days) -> do
let gross = realFracToDecimalP (cpPrec cp) incGross
foldDays (allocate cp gross) start days
where
srcAcnt' = AcntID srcAcnt
destAcnt' = AcntID destAcnt
incRes = isIncomeAcnt srcAcnt'
nonIncRes =
mapErrors isNotIncomeAcnt $
destAcnt'
: (alloAcnt <$> incPretax)
++ (alloAcnt <$> incTaxes)
++ (alloAcnt <$> incPosttax)
cpRes = lookupCurrency incCurrency
dayRes = liftExcept $ expandDatePat ds incWhen
start = fromGregorian' $ pStart incPayPeriod
pType' = pType incPayPeriod
flatPre = concatMap flattenAllo incPretax
flatTax = concatMap flattenAllo incTaxes
flatPost = concatMap flattenAllo incPosttax
sumAllos = sum . fmap faValue
entry0 a c ts = Entry {eAcnt = a, eValue = (), eComment = c, eTags = ts}
allocate cp gross prevDay day = do
scaler <- liftExcept $ periodScaler pType' prevDay day
let precision = cpPrec cp
let (preDeductions, pre) =
allocatePre precision gross $
flatPre ++ concatMap (selectAllos day) intPre
let tax =
allocateTax precision gross preDeductions scaler $
flatTax ++ concatMap (selectAllos day) intTax
aftertaxGross = gross - sumAllos (tax ++ pre)
let post =
allocatePost precision aftertaxGross $
flatPost ++ concatMap (selectAllos day) intPost
let src = entry0 srcAcnt' "gross income" (TagID <$> srcTags)
let dest = entry0 destAcnt' "balance after deductions" (TagID <$> destTags)
let allos = allo2Trans <$> (pre ++ tax ++ post)
let primary =
EntrySet
{ esTotalValue = -gross
, esCurrency = cpID cp
, esFrom = HalfEntrySet {hesPrimary = src, hesOther = []}
, esTo = HalfEntrySet {hesPrimary = dest, hesOther = allos}
}
return $
Tx
{ txMeta = TxMeta day incPriority (TxDesc "") key
, txPrimary = Left primary
, txOther = []
}
periodScaler
:: PeriodType
-> Day
-> Day
-> AppExcept PeriodScaler
periodScaler pt prev cur = return scale
where
n = workingDays wds prev cur
wds = case pt of
Hourly HourlyPeriod {hpWorkingDays} -> hpWorkingDays
Daily ds -> ds
scale prec x = case pt of
Hourly HourlyPeriod {hpAnnualHours, hpDailyHours} ->
realFracToDecimalP prec (x / fromIntegral hpAnnualHours)
* fromIntegral hpDailyHours
* fromIntegral n
Daily _ -> realFracToDecimalP prec (x * fromIntegral n / 365.25)
-- ASSUME start < end
workingDays :: [Weekday] -> Day -> Day -> Natural
workingDays wds start end = fromIntegral $ daysFull + daysTail
where
interval = diffDays end start
(nFull, nPart) = divMod interval 7
daysFull = fromIntegral (length wds') * nFull
daysTail = fromIntegral $ length $ takeWhile (< nPart) wds'
startDay = dayOfWeek start
wds' = L.sort $ (\x -> diff (fromWeekday x) startDay) <$> L.nub wds
diff a b = fromIntegral $ mod (fromEnum a - fromEnum b) 7
-- ASSUME days is a sorted list
foldDays
:: MonadAppError m
=> (Day -> Day -> m a)
-> Day
-> [Day]
-> m [a]
foldDays f start days = case NE.nonEmpty days of
Nothing -> return []
Just ds
| any (start >) ds ->
throwError $
AppException [PeriodError start $ minimum ds]
| otherwise ->
combineErrors $
snd $
L.mapAccumL (\prevDay day -> (day, f prevDay day)) start days
isIncomeAcnt :: (MonadAppError m, MonadFinance m) => AcntID -> m ()
isIncomeAcnt = checkAcntType IncomeT
isNotIncomeAcnt :: (MonadAppError m, MonadFinance m) => AcntID -> m ()
isNotIncomeAcnt = checkAcntTypes (AssetT :| [EquityT, ExpenseT, LiabilityT])
checkAcntType
:: (MonadAppError m, MonadFinance m)
=> AcntType
-> AcntID
-> m ()
checkAcntType t = checkAcntTypes (t :| [])
checkAcntTypes
:: (MonadAppError m, MonadFinance m)
=> NE.NonEmpty AcntType
-> AcntID
-> m ()
checkAcntTypes ts i = void $ go =<< lookupAccountType i
where
go t
| t `L.elem` ts = return i
| otherwise = throwError $ AppException [AccountTypeError i ts]
flattenAllo :: SingleAllocation v -> [FlatAllocation v]
flattenAllo Allocation {alloAmts, alloTo} = fmap go alloAmts
where
go Amount {amtValue, amtDesc} =
FlatAllocation
{ faTo = alloTo
, faValue = amtValue
, faDesc = amtDesc
}
-- ASSUME allocations are sorted
selectAllos :: Day -> DaySpanAllocation v -> [FlatAllocation v]
selectAllos day Allocation {alloAmts, alloTo} =
go <$> filter ((`inDaySpan` day) . amtWhen) alloAmts
where
go Amount {amtValue, amtDesc} =
FlatAllocation
{ faTo = alloTo
, faValue = amtValue
, faDesc = amtDesc
}
allo2Trans :: FlatAllocation Decimal -> Entry AcntID EntryLink TagID
allo2Trans FlatAllocation {faValue, faTo = TaggedAcnt {taAcnt, taTags}, faDesc} =
Entry
{ eValue = LinkValue (EntryFixed faValue)
, eComment = faDesc
, eAcnt = AcntID taAcnt
, eTags = TagID <$> taTags
}
type PreDeductions = M.Map T.Text Decimal
allocatePre
:: Precision
-> Decimal
-> [FlatAllocation PretaxValue]
-> (PreDeductions, [FlatAllocation Decimal])
allocatePre precision gross = L.mapAccumR go M.empty
where
go m f@FlatAllocation {faValue = PretaxValue {preCategory, preValue, prePercent}} =
let v =
if prePercent
then gross *. (preValue / 100)
else realFracToDecimalP precision preValue
in (mapAdd_ preCategory v m, f {faValue = v})
allocateTax
:: Precision
-> Decimal
-> PreDeductions
-> PeriodScaler
-> [FlatAllocation TaxValue]
-> [FlatAllocation Decimal]
allocateTax precision gross preDeds f = fmap (fmap go)
where
go TaxValue {tvCategories, tvMethod} =
let agi = gross - sum (mapMaybe (`M.lookup` preDeds) tvCategories)
in case tvMethod of
TMPercent p -> agi *. p / 100
TMBracket TaxProgression {tpDeductible, tpBrackets} ->
let taxDed = f precision tpDeductible
in foldBracket f precision (agi - taxDed) tpBrackets
-- | Compute effective tax percentage of a bracket
-- The algorithm can be thought of in three phases:
-- 1. Find the highest tax bracket by looping backward until the AGI is less
-- than the bracket limit
-- 2. Computing the tax in the top bracket by subtracting the AGI from the
-- bracket limit and multiplying by the tax percentage.
-- 3. Adding all lower brackets, which are just the limit of the bracket less
-- the amount of the lower bracket times the percentage.
--
-- In reality, this can all be done with one loop, but it isn't clear these
-- three steps are implemented from this alone.
foldBracket :: PeriodScaler -> Precision -> Decimal -> [TaxBracket] -> Decimal
foldBracket f prec agi bs = fst $ foldr go (0, agi) $ L.sortOn tbLowerLimit bs
where
go TaxBracket {tbLowerLimit, tbPercent} a@(acc, remain) =
let l = f prec tbLowerLimit
in if remain >= l
then (acc + (remain - l) *. (tbPercent / 100), l)
else a
allocatePost
:: Precision
-> Decimal
-> [FlatAllocation PosttaxValue]
-> [FlatAllocation Decimal]
allocatePost prec aftertax = fmap (fmap go)
where
go PosttaxValue {postValue, postPercent}
| postPercent = aftertax *. (postValue / 100)
| otherwise = realFracToDecimalP prec postValue
--------------------------------------------------------------------------------
-- shadow transfers
-- TODO this is going to be O(n*m), which might be a problem?
addShadowTransfers
:: (MonadAppError m, MonadFinance m)
=> [ShadowTransfer]
-> [Tx CommitR]
-> m [Tx CommitR]
addShadowTransfers ms = mapErrors go
where
go tx = do
es <- catMaybes <$> mapErrors (fromShadow tx) ms
return $ tx {txOther = Right <$> es}
fromShadow
:: (MonadAppError m, MonadFinance m)
=> Tx CommitR
-> ShadowTransfer
-> m (Maybe ShadowEntrySet)
fromShadow tx ShadowTransfer {stFrom, stTo, stDesc, stRatio, stCurrency, stMatch} =
combineErrorM curRes mRes $ \cur compiled -> do
res <- liftExcept $ shadowMatches compiled tx
let es = entryPair stFrom stTo cur stDesc stRatio ()
return $ if not res then Nothing else Just es
where
curRes = lookupCurrencyKey stCurrency
mRes = liftExcept $ compileMatch stMatch
shadowMatches :: TransferMatcherRe -> Tx CommitR -> AppExcept Bool
shadowMatches
TransferMatcher_ {tmFrom, tmTo, tmDate, tmVal}
Tx {txPrimary, txMeta = TxMeta {txmDate}} =
do
-- ASSUME these will never fail and thus I don't need to worry about
-- stacking the errors
fromRes <- acntMatches fa tmFrom
toRes <- acntMatches ta tmTo
-- NOTE this will only match against the primary entry set since those
-- are what are guaranteed to exist from a transfer
valRes <- case txPrimary of
Left es -> valMatches tmVal $ toRational $ esTotalValue es
Right _ -> return True
return $
fromRes
&& toRes
&& maybe True (`dateMatches` txmDate) tmDate
&& valRes
where
fa = either getAcntFrom getAcntFrom txPrimary
ta = either getAcntTo getAcntTo txPrimary
getAcntFrom = getAcnt esFrom
getAcntTo = getAcnt esTo
getAcnt f = eAcnt . hesPrimary . f
acntMatches (AcntID a) = maybe (return True) (match' a)
match' a AcntMatcher_ {amPat, amInvert} =
(if amInvert then not else id) <$> matchMaybe a amPat
compileMatch :: TransferMatcher_ T.Text -> AppExcept TransferMatcherRe
compileMatch m@TransferMatcher_ {tmTo, tmFrom} =
combineError tres fres $ \t f -> m {tmTo = t, tmFrom = f}
where
go a@AcntMatcher_ {amPat} = do
(_, p) <- compileRegex False amPat
return $ a {amPat = p}
tres = mapM go tmTo
fres = mapM go tmFrom
-- memberMaybe x AcntSet {asList, asInclude} =
-- (if asInclude then id else not) $ x `elem` (AcntID <$> asList)
--------------------------------------------------------------------------------
-- random
alloAcnt :: Allocation w v -> AcntID
alloAcnt = AcntID . taAcnt . alloTo
type IntAllocations =
( [DaySpanAllocation PretaxValue]
, [DaySpanAllocation TaxValue]
, [DaySpanAllocation PosttaxValue]
)
type DaySpanAllocation = Allocation DaySpan
type PeriodScaler = Precision -> Double -> Decimal
data FlatAllocation v = FlatAllocation
{ faValue :: !v
, faDesc :: !T.Text
, faTo :: !TaggedAcnt
}
deriving (Functor, Show)

21
lib/Internal/Config.hs Normal file
View File

@ -0,0 +1,21 @@
module Internal.Config
( readConfig
-- , readYaml
)
where
-- import Control.Exception
-- import Data.Yaml
import Dhall hiding (record)
import Internal.Types
import RIO
readConfig :: MonadUnliftIO m => FilePath -> m Config
readConfig confpath = liftIO $ unfix <$> inputFile auto confpath
-- readYaml :: FromJSON a => FilePath -> IO a
-- readYaml p = do
-- r <- decodeFileEither p
-- case r of
-- Right a -> return a
-- Left e -> throw e

View File

@ -1,905 +0,0 @@
module Internal.Database
( runDB
, readDB
, nukeTables
, updateMeta
-- , updateDBState
, tree2Records
, flattenAcntRoot
, indexAcntRoot
, paths2IDs
, mkPool
, insertEntry
, readUpdates
, updateTx
, sync
)
where
import Conduit
import Control.Monad.Except
import Control.Monad.IO.Rerunnable
import Control.Monad.Logger
import Data.Decimal
import Data.Hashable
import qualified Data.Text.IO as TI
import Database.Esqueleto.Experimental ((:&) (..), (==.), (?.), (^.))
import qualified Database.Esqueleto.Experimental as E
import Database.Esqueleto.Internal.Internal (SqlSelect)
import Database.Persist.Monad
import Database.Persist.Sqlite hiding
( Statement
, delete
, deleteWhere
, insert
, insertKey
, insert_
, runMigration
, update
, (==.)
, (||.)
)
import Internal.Budget
import Internal.History
import Internal.Types.Main
import Internal.Utils
import RIO hiding (LogFunc, isNothing, logDebug, on, (^.))
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.NonEmpty as NE
import qualified RIO.Set as S
import qualified RIO.Text as T
sync
:: (MonadUnliftIO m, MonadRerunnableIO m)
=> ConnectionPool
-> FilePath
-> Config
-> [Budget]
-> [History]
-> m ()
sync pool root c bs hs = do
-- _ <- askLoggerIO
(meta, txState, budgets, history) <- runSqlQueryT pool $ do
runMigration migrateAll
liftIOExceptT $ readDB c bs hs
-- Read raw transactions according to state. If a transaction is already in
-- the database, don't read it but record the commit so we can update it.
(budgets', history') <-
flip runReaderT txState $ do
-- TODO collect errors here
b <- liftIOExceptT $ readBudgetCRUD budgets
h <- readHistoryCRUD root history
return (b, h)
liftIO $ TI.putStr $ formatBuildPlan history budgets
-- Update the DB.
runSqlQueryT pool $ withTransaction $ flip runReaderT txState $ do
-- NOTE this must come first (unless we defer foreign keys)
updateMeta meta
res <- runExceptT $ do
-- TODO multithread this :)
insertBudgets budgets'
insertHistory history'
-- NOTE this rerunnable thing is a bit misleading; fromEither will throw
-- whatever error is encountered above in an IO context, but the first
-- thrown error should be caught despite possibly needing to be rerun
rerunnableIO $ fromEither res
formatBuildPlan :: PreHistoryCRUD -> PreBudgetCRUD -> T.Text
formatBuildPlan
CRUDOps {coCreate = hc, coRead = hr, coUpdate = hu, coDelete = hd}
CRUDOps {coCreate = bc, coDelete = bd} =
T.unlines $ "Build plan:" : (T.append " " <$> ht ++ [""] ++ bt)
where
ht =
[ T.append "History transfers to create: " $ tshow hCt
, T.append "History statements to create: " $ tshow hCs
, T.append "History entries to read: " $ tshow $ length hr
, T.append "History entry sets to update: " $ tshow $ length hu
]
++ formatDel "History" hd
bt =
T.append "Budgets to create: " (tshow $ bgtLabel <$> bc)
: formatDel "Budget" bd
toDel what thing n = T.unwords [what, thing, "to delete:", tshow n]
formatDel what (DeleteTxs e a b c' d) =
[ f "commits" e
, f "transactions" a
, f "entry sets" b
, f "entries" c'
, f "tag relations" d
]
where
f :: T.Text -> [a] -> T.Text
f thing = toDel what thing . length
(hCt, hCs) = bimap length length hc
runDB
:: MonadUnliftIO m
=> SqlConfig
-> SqlQueryT (NoLoggingT m) a
-> m a
runDB c more =
runNoLoggingT $ do
pool <- mkPool c
runSqlQueryT pool $ do
_ <- lift askLoggerIO
runMigration migrateAll
more
mkPool :: (MonadLoggerIO m, MonadUnliftIO m) => SqlConfig -> m ConnectionPool
mkPool c = case c of
Sqlite p -> createSqlitePool p 10
-- conn <- open p
-- wrapConnection conn logfn
Postgres -> error "postgres not implemented"
nukeTables :: MonadSqlQuery m => m ()
nukeTables = do
deleteWhere ([] :: [Filter CommitR])
deleteWhere ([] :: [Filter CurrencyR])
deleteWhere ([] :: [Filter AccountR])
deleteWhere ([] :: [Filter TransactionR])
-- showBalances :: MonadUnliftIO m => SqlPersistT m ()
-- showBalances = do
-- xs <- select $ do
-- (accounts :& splits :& txs) <-
-- from
-- $ table @AccountR
-- `innerJoin` table @SplitR
-- `on` (\(a :& s) -> a ^. AccountRId ==. s ^. SplitRAccount)
-- `innerJoin` table @TransactionR
-- `on` (\(_ :& s :& t) -> s ^. SplitRTransaction ==. t ^. TransactionRId)
-- where_ $
-- isNothing (txs ^. TransactionRBucket)
-- &&. ( (accounts ^. AccountRFullpath `like` val "asset" ++. (%))
-- ||. (accounts ^. AccountRFullpath `like` val "liability" ++. (%))
-- )
-- groupBy (accounts ^. AccountRFullpath, accounts ^. AccountRName)
-- return
-- ( accounts ^. AccountRFullpath
-- , accounts ^. AccountRName
-- , sum_ $ splits ^. SplitRValue
-- )
-- -- TODO super stetchy table printing thingy
-- liftIO $ do
-- putStrLn $ T.unpack $ fmt "Account" "Balance"
-- putStrLn $ T.unpack $ fmt (T.replicate 60 "-") (T.replicate 15 "-")
-- mapM_ (putStrLn . T.unpack . fmtBalance) xs
-- where
-- fmtBalance (path, name, bal) = fmt (toFullPath path name) (toBal bal)
-- fmt a b = T.unwords ["| ", pad 60 a, " | ", pad 15 b, " |"]
-- pad n xs = T.append xs $ T.replicate (n - T.length xs) " "
-- toFullPath path name = T.unwords [unValue @T.Text path, "/", unValue @T.Text name]
-- toBal = maybe "???" (fmtRational 2) . unValue
readDB
:: (MonadAppError m, MonadSqlQuery m)
=> Config
-> [Budget]
-> [History]
-> m (MetaCRUD, TxState, PreBudgetCRUD, PreHistoryCRUD)
readDB c bs hs = do
curAcnts <- readCurrentIds
curPaths <- readCurrentIds
curCurs <- readCurrentIds
curTags <- readCurrentIds
(curBgts, curHistTrs, curHistSts) <- readCurrentCommits
let bsRes = BudgetSpan <$> resolveScope budgetInterval
let hsRes = HistorySpan <$> resolveScope statementInterval
combineErrorM bsRes hsRes $ \bscope hscope -> do
-- ASSUME the db must be empty if these are empty
let dbempty = null curAcnts && null curCurs && null curTags
let meta =
MetaCRUD
{ mcCurrencies = makeCD newCurs curCurs
, mcTags = makeCD newTags curTags
, mcAccounts = makeCD newAcnts curAcnts
, mcPaths = makeCD newPaths curPaths
, mcBudgetScope = bscope
, mcHistoryScope = hscope
}
let txS =
TxState
{ tsAccountMap = amap
, tsCurrencyMap = cmap
, tsTagMap = tmap
, tsBudgetScope = bscope
, tsHistoryScope = hscope
}
(bChanged, hChanged) <- readScopeChanged dbempty bscope hscope
budgets <- makeBudgetCRUD existing bs curBgts bChanged
history <- makeStatementCRUD existing (ts, curHistTrs) (ss, curHistSts) hChanged
return (meta, txS, budgets, history)
where
(ts, ss) = splitHistory hs
makeCD new old =
let (cs, _, ds) = setDiffWith (\a b -> E.entityKey a == b) new old
in CRUDOps cs () () ds
(newAcnts, newPaths) = indexAcntRoot $ accounts c
newTags = tag2Record <$> tags c
newCurs = currency2Record <$> currencies c
resolveScope f = liftExcept $ resolveDaySpan $ f $ scope c
amap = makeAcntMap newAcnts
cmap = currencyMap newCurs
tmap = makeTagMap newTags
fromMap f = S.fromList . fmap f . M.elems
existing = ExistingConfig (fromMap fst amap) (fromMap id tmap) (fromMap cpID cmap)
makeBudgetCRUD
:: MonadSqlQuery m
=> ExistingConfig
-> [Budget]
-> [CommitHash]
-> Bool
-> m (CRUDOps [Budget] () () DeleteTxs)
makeBudgetCRUD existing new old scopeChanged = do
(toIns, toDel) <-
if scopeChanged
then (new,) <$> readTxIds old
else do
let (toDelHashes, overlap, toIns) = setDiffHashes old new
toDel <- readTxIds toDelHashes
(toInsRetry, _) <- readInvalidIds existing overlap
return (toIns ++ (snd <$> toInsRetry), toDel)
return $ CRUDOps toIns () () toDel
makeStatementCRUD
:: (MonadAppError m, MonadSqlQuery m)
=> ExistingConfig
-> ([PairedTransfer], [CommitHash])
-> ([Statement], [CommitHash])
-> Bool
-> m
( CRUDOps
([PairedTransfer], [Statement])
[ReadEntry]
[Either TotalUpdateEntrySet FullUpdateEntrySet]
DeleteTxs
)
makeStatementCRUD existing ts ss scopeChanged = do
(toInsTs, toDelTs, validTs) <- uncurry diff ts
(toInsSs, toDelSs, validSs) <- uncurry diff ss
let toDelAllHashes = toDelTs ++ toDelSs
-- If we are inserting or deleting something or the scope changed, pull out
-- the remainder of the entries to update/read as we are (re)inserting other
-- stuff (this is necessary because a given transaction may depend on the
-- value of previous transactions, even if they are already in the DB).
(toRead, toUpdate) <- case (toInsTs, toInsSs, toDelAllHashes, scopeChanged) of
([], [], [], False) -> return ([], [])
_ -> readUpdates $ validTs ++ validSs
toDelAll <- readTxIds toDelAllHashes
return $ CRUDOps (toInsTs, toInsSs) toRead toUpdate toDelAll
where
diff :: (MonadSqlQuery m, Hashable a) => [a] -> [CommitHash] -> m ([a], [CommitHash], [CommitHash])
diff new old = do
let (toDelHashes, overlap, toIns) = setDiffHashes old new
-- Check the overlap for rows with accounts/tags/currencies that
-- won't exist on the next update. Those with invalid IDs will be set aside
-- to delete and reinsert (which may also fail) later
(invalid, valid) <- readInvalidIds existing overlap
let (toDelAllHashes, toInsAll) = bimap (toDelHashes ++) (toIns ++) $ L.unzip invalid
return (toInsAll, toDelAllHashes, valid)
setDiffHashes :: Hashable a => [CommitHash] -> [a] -> ([CommitHash], [(CommitHash, a)], [a])
setDiffHashes = setDiffWith (\a b -> CommitHash (hash b) == a)
readScopeChanged
:: (MonadAppError m, MonadSqlQuery m)
=> Bool
-> BudgetSpan
-> HistorySpan
-> m (Bool, Bool)
readScopeChanged dbempty bscope hscope = do
rs <- dumpTbl
-- TODO these errors should only fire when someone messed with the DB
case rs of
[] -> if dbempty then return (True, True) else throwAppError $ DBError DBShouldBeEmpty
[r] -> do
let (ConfigStateR h b) = E.entityVal r
return (bscope /= b, hscope /= h)
_ -> throwAppError $ DBError DBMultiScope
readTxIds :: MonadSqlQuery m => [CommitHash] -> m DeleteTxs
readTxIds cs = do
xs <- selectE $ do
(commits :& txs :& ess :& es :& ts) <-
E.from
$ E.table
`E.innerJoin` E.table
`E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit)
`E.innerJoin` E.table
`E.on` (\(_ :& t :& es) -> t ^. TransactionRId ==. es ^. EntrySetRTransaction)
`E.innerJoin` E.table
`E.on` (\(_ :& _ :& es :& e) -> es ^. EntrySetRId ==. e ^. EntryREntryset)
`E.leftJoin` E.table
`E.on` (\(_ :& _ :& _ :& e :& t) -> E.just (e ^. EntryRId) ==. t ?. TagRelationREntry)
E.where_ $ commits ^. CommitRHash `E.in_` E.valList cs
return
( commits ^. CommitRId
, txs ^. TransactionRId
, ess ^. EntrySetRId
, es ^. EntryRId
, ts ?. TagRelationRId
)
let (cms, txs, ss, es, ts) = L.unzip5 xs
return $
DeleteTxs
{ dtCommits = go cms
, dtTxs = go txs
, dtEntrySets = go ss
, dtEntries = go es
, dtTagRelations = catMaybes $ E.unValue <$> ts
}
where
go :: Eq a => [E.Value a] -> [a]
go = fmap (E.unValue . NE.head) . NE.group
makeTagMap :: [Entity TagR] -> TagMap
makeTagMap = M.fromList . fmap (\e -> (tagRSymbol $ entityVal e, entityKey e))
tag2Record :: Tag -> Entity TagR
tag2Record t@Tag {tagID, tagDesc} = Entity (toKey t) $ TagR (TagID tagID) tagDesc
currency2Record :: Currency -> Entity CurrencyR
currency2Record c@Currency {curSymbol, curFullname, curPrecision} =
Entity (toKey c) $ CurrencyR (CurID curSymbol) curFullname (fromIntegral curPrecision)
readCurrentIds :: (PersistEntity a, MonadSqlQuery m) => m [Key a]
readCurrentIds = fmap (E.unValue <$>) $ selectE $ do
rs <- E.from E.table
return (rs ^. E.persistIdField)
readCurrentCommits :: MonadSqlQuery m => m ([CommitHash], [CommitHash], [CommitHash])
readCurrentCommits = do
xs <- selectE $ do
commits <- E.from E.table
return (commits ^. CommitRHash, commits ^. CommitRType)
return $ foldr go ([], [], []) xs
where
go (x, t) (bs, ts, hs) =
let y = E.unValue x
in case E.unValue t of
CTBudget -> (y : bs, ts, hs)
CTHistoryTransfer -> (bs, y : ts, hs)
CTHistoryStatement -> (bs, ts, y : hs)
setDiffWith :: (a -> b -> Bool) -> [a] -> [b] -> ([a], [(a, b)], [b])
setDiffWith f = go [] []
where
go inA inBoth [] bs = (inA, inBoth, bs)
go inA inBoth as [] = (as ++ inA, inBoth, [])
go inA inBoth (a : as) bs =
let (res, bs') = findDelete (f a) bs
in case res of
Nothing -> go (a : inA) inBoth as bs
Just b -> go inA ((a, b) : inBoth) as bs'
findDelete :: (a -> Bool) -> [a] -> (Maybe a, [a])
findDelete f xs = case break f xs of
(ys, []) -> (Nothing, ys)
(ys, z : zs) -> (Just z, ys ++ zs)
dumpTbl :: (MonadSqlQuery m, PersistEntity r) => m [Entity r]
dumpTbl = selectE $ E.from E.table
currencyMap :: [Entity CurrencyR] -> CurrencyMap
currencyMap =
M.fromList
. fmap
( \e ->
( currencyRSymbol $ entityVal e
, CurrencyPrec (entityKey e) $ currencyRPrecision $ entityVal e
)
)
toKey :: (ToBackendKey SqlBackend b, Hashable a) => a -> Key b
toKey = toSqlKey . fromIntegral . hash
makeAccountEntity :: AccountR -> Entity AccountR
makeAccountEntity a = Entity (toKey $ accountRFullpath a) a
makeAccountR :: AcntType -> T.Text -> [T.Text] -> T.Text -> Bool -> AccountR
makeAccountR atype name parents des = AccountR name path des (accountSign atype)
where
path = AcntPath atype (reverse $ name : parents)
tree2Records :: AcntType -> AccountTree -> ([Entity AccountR], [Entity AccountPathR])
tree2Records t = go []
where
go ps (Placeholder d n cs) =
let (parentKeys, parentNames) = L.unzip ps
a = acnt n parentNames d False
k = entityKey a
thesePaths = expand k parentKeys
in bimap ((a :) . concat) ((thesePaths ++) . concat) $
L.unzip $
go ((k, n) : ps) <$> cs
go ps (Account d n) =
let (parentKeys, parentNames) = L.unzip ps
a = acnt n parentNames d True
k = entityKey a
in ([a], expand k parentKeys)
expand h0 hs = (\(h, d) -> accountPathRecord h h0 d) <$> zip (h0 : hs) [0 ..]
acnt n ps d = makeAccountEntity . makeAccountR t n ps d
accountPathRecord :: Key AccountR -> Key AccountR -> Int -> Entity AccountPathR
accountPathRecord p c d =
Entity (toKey (fromSqlKey p, fromSqlKey c)) $ AccountPathR p c d
paths2IDs :: [(AcntPath, a)] -> [(AcntID, a)]
paths2IDs =
uncurry zip
. first trimNames
. L.unzip
. L.sortOn fst
. fmap (first (NE.reverse . acntPath2NonEmpty))
-- none of these errors should fire assuming that input is sorted and unique
trimNames :: [NonEmpty T.Text] -> [AcntID]
trimNames = fmap (AcntID . T.intercalate "_") . go []
where
go :: [T.Text] -> [NonEmpty T.Text] -> [[T.Text]]
go prev = concatMap (go' prev) . groupNonEmpty
go' prev (key, rest) = case rest of
(_ :| []) -> [key : prev]
([] :| xs) ->
let next = key : prev
other = go next $ fmap (fromMaybe err . NE.nonEmpty) xs
in next : other
(x :| xs) -> go (key : prev) $ fmap (fromMaybe err . NE.nonEmpty) (x : xs)
err = error "account path list either not sorted or contains duplicates"
groupNonEmpty :: Ord a => [NonEmpty a] -> [(a, NonEmpty [a])]
groupNonEmpty = fmap (second (NE.tail <$>)) . groupWith NE.head
flattenAcntRoot :: AccountRoot -> [(AcntType, AccountTree)]
flattenAcntRoot AccountRoot_ {arIncome, arExpenses, arLiabilities, arAssets, arEquity} =
((IncomeT,) <$> arIncome)
++ ((ExpenseT,) <$> arExpenses)
++ ((LiabilityT,) <$> arLiabilities)
++ ((AssetT,) <$> arAssets)
++ ((EquityT,) <$> arEquity)
makeAcntMap :: [Entity AccountR] -> AccountMap
makeAcntMap =
M.fromList
. paths2IDs
. fmap go
. filter (accountRLeaf . snd)
. fmap (\e -> (E.entityKey e, E.entityVal e))
where
go (k, v) = let p = accountRFullpath v in (p, (k, apType p))
indexAcntRoot :: AccountRoot -> ([Entity AccountR], [Entity AccountPathR])
indexAcntRoot = bimap concat concat . L.unzip . fmap (uncurry tree2Records) . flattenAcntRoot
updateCD
:: ( MonadSqlQuery m
, PersistRecordBackend a SqlBackend
)
=> EntityCRUDOps a
-> m ()
updateCD (CRUDOps cs () () ds) = do
mapM_ deleteKeyE ds
insertEntityManyE cs
-- TODO defer foreign keys so I don't need to confusingly reverse this stuff
deleteTxs :: MonadSqlQuery m => DeleteTxs -> m ()
deleteTxs DeleteTxs {dtTxs, dtEntrySets, dtEntries, dtTagRelations, dtCommits} = do
mapM_ deleteKeyE dtTagRelations
mapM_ deleteKeyE dtEntries
mapM_ deleteKeyE dtEntrySets
mapM_ deleteKeyE dtTxs
mapM_ deleteKeyE dtCommits
-- updateDBState :: (MonadFinance m, MonadSqlQuery m) => m ()
-- updateDBState = do
-- updateCD =<< asks csCurrencies
-- updateCD =<< asks csAccounts
-- updateCD =<< asks csPaths
-- updateCD =<< asks csTags
-- -- deleteTxs =<< asks (coDelete . csBudgets)
-- -- deleteTxs =<< asks (coDelete . csHistory)
-- b <- asks csBudgetScope
-- h <- asks csHistoryScope
-- repsertE (E.toSqlKey 1) $ ConfigStateR h b
updateMeta :: MonadSqlQuery m => MetaCRUD -> m ()
updateMeta
MetaCRUD
{ mcCurrencies
, mcAccounts
, mcPaths
, mcTags
, mcBudgetScope
, mcHistoryScope
} = do
updateCD mcCurrencies
updateCD mcAccounts
updateCD mcPaths
updateCD mcTags
repsertE (E.toSqlKey 1) $ ConfigStateR mcHistoryScope mcBudgetScope
readInvalidIds
:: MonadSqlQuery m
=> ExistingConfig
-> [(CommitHash, a)]
-> m ([(CommitHash, a)], [CommitHash])
readInvalidIds ExistingConfig {ecAccounts, ecCurrencies, ecTags} xs = do
rs <- selectE $ do
(commits :& _ :& entrysets :& entries :& tags) <-
E.from
$ E.table
`E.innerJoin` E.table
`E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit)
`E.innerJoin` E.table
`E.on` (\(_ :& t :& es) -> t ^. TransactionRId ==. es ^. EntrySetRTransaction)
`E.innerJoin` E.table
`E.on` (\(_ :& _ :& es :& e) -> es ^. EntrySetRId ==. e ^. EntryREntryset)
`E.leftJoin` E.table
`E.on` (\(_ :& _ :& _ :& e :& r) -> E.just (e ^. EntryRId) ==. r ?. TagRelationREntry)
E.where_ $ commits ^. CommitRHash `E.in_` E.valList (fmap fst xs)
return
( commits ^. CommitRHash
, entrysets ^. EntrySetRCurrency
, entries ^. EntryRAccount
, tags ?. TagRelationRTag
)
-- TODO there are faster ways to do this; may/may not matter
let cs = go ecCurrencies $ fmap (\(i, E.Value c, _, _) -> (i, c)) rs
let as = go ecAccounts $ fmap (\(i, _, E.Value a, _) -> (i, a)) rs
let ts = go ecTags [(i, t) | (i, _, _, E.Value (Just t)) <- rs]
let invalid = (cs `S.union` as) `S.union` ts
return $ second (fst <$>) $ L.partition ((`S.member` invalid) . fst) xs
where
go existing =
S.fromList
. fmap (E.unValue . fst)
. L.filter (not . all (`S.member` existing) . snd)
. groupKey id
readUpdates
:: (MonadAppError m, MonadSqlQuery m)
=> [CommitHash]
-> m ([ReadEntry], [Either TotalUpdateEntrySet FullUpdateEntrySet])
readUpdates hashes = do
xs <- selectE $ do
(commits :& txs :& entrysets :& entries :& currencies) <-
E.from
$ E.table @CommitR
`E.innerJoin` E.table @TransactionR
`E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit)
`E.innerJoin` E.table @EntrySetR
`E.on` (\(_ :& t :& es) -> t ^. TransactionRId ==. es ^. EntrySetRTransaction)
`E.innerJoin` E.table @EntryR
`E.on` (\(_ :& _ :& es :& e) -> es ^. EntrySetRId ==. e ^. EntryREntryset)
`E.innerJoin` E.table @CurrencyR
`E.on` (\(_ :& _ :& es :& _ :& cur) -> es ^. EntrySetRCurrency ==. cur ^. CurrencyRId)
E.where_ $ commits ^. CommitRHash `E.in_` E.valList hashes
return
( entrysets ^. EntrySetRRebalance
,
(
( entrysets ^. EntrySetRId
, entrysets ^. EntrySetRIndex
, txs ^. TransactionRDate
, txs ^. TransactionRPriority
, txs ^. TransactionRDescription
,
( entrysets ^. EntrySetRCurrency
, currencies ^. CurrencyRPrecision
)
)
, entries
)
)
let (toUpdate, toRead) = L.partition (E.unValue . fst) xs
toUpdate' <- liftExcept $ mapErrors makeUES $ groupKey (\(i, _, _, _, _, _) -> i) (snd <$> toUpdate)
let toRead' = fmap (makeRE . snd) toRead
return (toRead', toUpdate')
where
makeUES ((_, esi, day, pri, desc, (curID, prec)), es) = do
let sk = TxSortKey (E.unValue day) (E.unValue pri) (E.unValue desc)
let prec' = fromIntegral $ E.unValue prec
let cur = E.unValue curID
let res =
bimap NE.nonEmpty NE.nonEmpty $
NE.partition ((< 0) . entryRIndex . snd) $
NE.sortWith (entryRIndex . snd) $
fmap (\e -> (entityKey e, entityVal e)) es
case res of
(Just froms, Just tos) -> do
let tot = sum $ fmap (entryRValue . snd) froms
(from0, fromRO, fromUnkVec) <- splitFrom prec' $ NE.reverse froms
(from0', fromUnk, to0, toRO, toUnk) <- splitTo prec' from0 fromUnkVec tos
-- TODO WAP (wet ass programming)
return $ case from0' of
Left x ->
Left $
UpdateEntrySet
{ utCurrency = cur
, utFrom0 = x
, utTo0 = to0
, utFromRO = fromRO
, utToRO = toRO
, utFromUnk = fromUnk
, utToUnk = toUnk
, utTotalValue = realFracToDecimalP prec' tot
, utSortKey = sk
, utIndex = E.unValue esi
}
Right x ->
Right $
UpdateEntrySet
{ utCurrency = cur
, utFrom0 = x
, utTo0 = to0
, utFromRO = fromRO
, utToRO = toRO
, utFromUnk = fromUnk
, utToUnk = toUnk
, utTotalValue = ()
, utSortKey = sk
, utIndex = E.unValue esi
}
-- TODO this error is lame
_ -> throwAppError $ DBError DBUpdateUnbalanced
makeRE ((_, esi, day, pri, desc, (curID, prec)), entry) = do
let e = entityVal entry
in ReadEntry
{ reCurrency = E.unValue curID
, reAcnt = entryRAccount e
, reValue = realFracToDecimal (fromIntegral $ E.unValue prec) (entryRValue e)
, reSortKey = TxSortKey (E.unValue day) (E.unValue pri) (E.unValue desc)
, reESIndex = E.unValue esi
, reIndex = entryRIndex e
}
splitFrom
:: Precision
-> NonEmpty (EntryRId, EntryR)
-> AppExcept (Either UEBlank (Either UE_RO UEUnk), [UE_RO], [UEUnk])
splitFrom prec (f0 :| fs) = do
-- ASSUME entries are sorted by index
-- TODO combine errors here
let f0Res = readDeferredValue prec f0
let fsRes = mapErrors (splitDeferredValue prec) fs
combineErrorM f0Res fsRes $ \f0' fs' -> do
let (ro, unk) = partitionEithers fs'
-- let idxVec = V.fromList $ fmap (either (const Nothing) Just) fs'
return (f0', ro, unk)
splitTo
:: Precision
-> Either UEBlank (Either UE_RO UEUnk)
-> [UEUnk]
-> NonEmpty (EntryRId, EntryR)
-> AppExcept
( Either (UEBlank, [UELink]) (Either UE_RO (UEUnk, [UELink]))
, [(UEUnk, [UELink])]
, UEBlank
, [UE_RO]
, [UEUnk]
)
splitTo prec from0 fromUnk (t0 :| ts) = do
-- How to split the credit side of the database transaction in 1024 easy
-- steps:
--
-- 1. Split incoming entries (except primary) into those with links and not
let (unlinked, linked) = partitionEithers $ fmap splitLinked ts
-- 2. For unlinked entries, split into read-only and unknown entries
let unlinkedRes = partitionEithers <$> mapErrors (splitDeferredValue prec) unlinked
-- 3. For linked entries, split into those that link to the primary debit
-- entry and not
let (linked0, linkedN) = second (groupKey id) $ L.partition ((== 0) . fst) linked
-- 4. For linked entries that don't link to the primary debit entry, split
-- into those that link to an unknown debit entry or not. Those that
-- are not will be read-only and those that are will be collected with
-- their linked debit entry
let linkedRes = zipPaired prec fromUnk linkedN
-- 5. For entries linked to the primary debit entry, turn them into linked
-- entries (lazily only used when needed later)
let from0Res = mapErrors (makeLinkUnk . snd) linked0
combineErrorM3 from0Res linkedRes unlinkedRes $
-- 6. Depending on the type of primary debit entry we have, add linked
-- entries if it is either an unknown or a blank (to be solved) entry,
-- or turn the remaining linked entries to read-only and add to the other
-- read-only entries
\from0Links (fromUnk', toROLinkedN) (toROUnlinked, toUnk) -> do
let (from0', toROLinked0) = case from0 of
Left blnk -> (Left (blnk, from0Links), [])
Right (Left ro) -> (Right $ Left ro, makeRoUE prec . snd . snd <$> linked0)
Right (Right unk) -> (Right $ Right (unk, from0Links), [])
return (from0', fromUnk', primary, toROLinked0 ++ toROLinkedN ++ toROUnlinked, toUnk)
where
primary = uncurry makeUnkUE t0
splitLinked t@(_, e) = maybe (Left t) (Right . (,t)) $ entryRCachedLink e
-- | Match linked credit entries with unknown entries, returning a list of
-- matches and non-matching (read-only) credit entries. ASSUME both lists are
-- sorted according to index and 'fst' respectively. NOTE the output will NOT be
-- sorted.
zipPaired
:: Precision
-> [UEUnk]
-> [(EntryIndex, NonEmpty (EntryRId, EntryR))]
-> AppExcept ([(UEUnk, [UELink])], [UE_RO])
zipPaired prec = go ([], [])
where
nolinks = ((,[]) <$>)
go acc fs [] = return $ first (nolinks fs ++) acc
go (facc, tacc) fs ((ti, tls) : ts) = do
let (lesser, rest) = L.span ((< ti) . ueIndex) fs
links <- NE.toList <$> mapErrors makeLinkUnk tls
let (nextLink, fs') = case rest of
(r0 : rs)
| ueIndex r0 == ti -> (Just (r0, links), rs)
| otherwise -> (Nothing, rest)
_ -> (Nothing, rest)
let acc' = (nolinks lesser ++ facc, tacc)
let ros = NE.toList $ makeRoUE prec . snd <$> tls
let f = maybe (second (++ ros)) (\u -> first (u :)) nextLink
go (f acc') fs' ts
makeLinkUnk :: (EntryRId, EntryR) -> AppExcept UELink
makeLinkUnk (k, e) =
-- TODO error should state that scale must be present for a link in the db
maybe
(throwAppError $ DBError $ DBLinkError k DBLinkNoScale)
(return . makeUE k e . LinkScale)
$ fromRational <$> entryRCachedValue e
splitDeferredValue :: Precision -> (EntryRId, EntryR) -> AppExcept (Either UE_RO UEUnk)
splitDeferredValue prec p@(k, _) = do
res <- readDeferredValue prec p
case res of
Left _ -> throwAppError $ DBError $ DBLinkError k DBLinkNoValue
Right x -> return x
readDeferredValue :: Precision -> (EntryRId, EntryR) -> AppExcept (Either UEBlank (Either UE_RO UEUnk))
readDeferredValue prec (k, e) = case (entryRCachedValue e, entryRCachedType e) of
(Nothing, Just TFixed) -> return $ Right $ Left $ makeRoUE prec e
(Just v, Just TBalance) -> go $ fmap EVBalance $ makeUE k e $ realFracToDecimalP prec v
(Just v, Just TPercent) -> go $ fmap EVPercent $ makeUE k e $ fromRational v
(Nothing, Nothing) -> return $ Left $ makeUnkUE k e
(Just v, Nothing) -> err $ DBLinkInvalidValue v False
(Just v, Just TFixed) -> err $ DBLinkInvalidValue v True
(Nothing, Just TBalance) -> err DBLinkInvalidBalance
(Nothing, Just TPercent) -> err DBLinkInvalidPercent
where
go = return . Right . Right
err = throwAppError . DBError . DBLinkError k
makeUE :: i -> EntryR -> v -> UpdateEntry i v
makeUE k e v = UpdateEntry k (entryRAccount e) v (entryRIndex e)
makeRoUE :: Precision -> EntryR -> UpdateEntry () StaticValue
makeRoUE prec e = makeUE () e $ StaticValue (realFracToDecimalP prec $ entryRValue e)
makeUnkUE :: EntryRId -> EntryR -> UpdateEntry EntryRId ()
makeUnkUE k e = makeUE k e ()
-- updateEntries
-- :: (MonadSqlQuery m, MonadFinance m, MonadRerunnableIO m)
-- => [ ( BudgetName
-- , CRUDOps
-- [Tx CommitR]
-- [ReadEntry]
-- [(Either TotalUpdateEntrySet FullUpdateEntrySet)]
-- DeleteTxs
-- )
-- ]
-- -> m ()
-- updateEntries es = do
-- res <- runExceptT $ mapErrors (uncurry insertAll) es
-- void $ rerunnableIO $ fromEither res
insertBudgets
:: (MonadAppError m, MonadSqlQuery m, MonadFinance m)
=> FinalBudgetCRUD
-> m ()
insertBudgets (CRUDOps bs () () ds) = do
deleteTxs ds
mapM_ go bs
where
go (name, cs) = do
-- TODO useless overhead?
(toUpdate, toInsert) <- balanceTxs (ToInsert <$> cs)
mapM_ updateTx toUpdate
forM_ (groupWith (txmCommit . itxMeta) toInsert) $
\(c, ts) -> do
ck <- insert c
mapM_ (insertTx name ck) ts
insertHistory
:: (MonadAppError m, MonadSqlQuery m, MonadFinance m)
=> FinalHistoryCRUD
-> m ()
insertHistory (CRUDOps cs rs us ds) = do
(toUpdate, toInsert) <- balanceTxs $ (ToInsert <$> cs) ++ (ToRead <$> rs) ++ (ToUpdate <$> us)
mapM_ updateTx toUpdate
forM_ (groupWith (txmCommit . itxMeta) toInsert) $
\(c, ts) -> do
ck <- insert c
mapM_ (insertTx historyName ck) ts
deleteTxs ds
-- insertAll
-- :: (MonadAppError m, MonadSqlQuery m, MonadFinance m)
-- => BudgetName
-- -> CRUDOps
-- [Tx CommitR]
-- [ReadEntry]
-- [Either TotalUpdateEntrySet FullUpdateEntrySet]
-- DeleteTxs
-- -> m ()
-- insertAll b (CRUDOps cs rs us ds) = do
-- (toUpdate, toInsert) <- balanceTxs $ (ToInsert <$> cs) ++ (ToRead <$> rs) ++ (ToUpdate <$> us)
-- mapM_ updateTx toUpdate
-- forM_ (groupWith itxCommit toInsert) $
-- \(c, ts) -> do
-- ck <- insert c
-- mapM_ (insertTx b ck) ts
-- deleteTxs ds
insertTx :: MonadSqlQuery m => BudgetName -> CommitRId -> InsertTx -> m ()
insertTx b c InsertTx {itxMeta = TxMeta {txmDate, txmPriority, txmDesc}, itxEntrySets} = do
k <- insert $ TransactionR c txmDate b txmDesc txmPriority
mapM_ (uncurry (insertEntrySet k)) $ zip [0 ..] (NE.toList itxEntrySets)
where
insertEntrySet tk i InsertEntrySet {iesCurrency, iesFromEntries, iesToEntries} = do
let fs = NE.toList iesFromEntries
let ts = NE.toList iesToEntries
let rebalance = any (isJust . ieCached) (fs ++ ts)
esk <- insert $ EntrySetR tk iesCurrency i rebalance
mapM_ (uncurry (go esk)) $ zip [0 ..] ts ++ zip (negate <$> [1 ..]) fs
go k i e = void $ insertEntry k i e
insertEntry :: MonadSqlQuery m => EntrySetRId -> EntryIndex -> InsertEntry -> m EntryRId
insertEntry
k
i
InsertEntry
{ ieEntry = Entry {eValue, eTags, eAcnt, eComment}
, ieCached
} =
do
ek <- insert $ EntryR k eAcnt eComment (toRational eValue) i cval ctype deflink
mapM_ (insert_ . TagRelationR ek) eTags
return ek
where
(cval, ctype, deflink) = case ieCached of
(Just (CachedLink x s)) -> (Just (toRational s), Nothing, Just x)
(Just (CachedBalance b)) -> (Just (toRational b), Just TBalance, Nothing)
(Just (CachedPercent p)) -> (Just (toRational p), Just TPercent, Nothing)
Nothing -> (Nothing, Just TFixed, Nothing)
updateTx :: MonadSqlQuery m => UEBalanced -> m ()
updateTx UpdateEntry {ueID, ueValue} = update ueID [EntryRValue =. v]
where
v = toRational $ unStaticValue ueValue
repsertE :: (MonadSqlQuery m, PersistRecordBackend r SqlBackend) => Key r -> r -> m ()
repsertE k r = unsafeLiftSql "esqueleto-repsert" (E.repsert k r)
selectE :: (MonadSqlQuery m, SqlSelect a r) => E.SqlQuery a -> m [r]
selectE q = unsafeLiftSql "esqueleto-select" (E.select q)
deleteKeyE :: (MonadSqlQuery m, PersistRecordBackend a SqlBackend) => Key a -> m ()
deleteKeyE q = unsafeLiftSql "esqueleto-deleteKey" (E.deleteKey q)
insertEntityManyE :: (MonadSqlQuery m, PersistRecordBackend a SqlBackend) => [Entity a] -> m ()
insertEntityManyE q = unsafeLiftSql "esqueleto-insertEntityMany" (E.insertEntityMany q)
historyName :: BudgetName
historyName = BudgetName "history"

View File

@ -0,0 +1,366 @@
module Internal.Database.Ops
( runDB
, nukeTables
, updateHashes
, updateDBState
, getDBState
, tree2Records
, flattenAcntRoot
, paths2IDs
, mkPool
)
where
import Conduit
import Control.Monad.Except
import Control.Monad.Logger
import Data.Hashable
import Database.Esqueleto.Experimental ((==.), (^.))
import qualified Database.Esqueleto.Experimental as E
import Database.Esqueleto.Internal.Internal (SqlSelect)
import Database.Persist.Monad
-- import Database.Persist.Sql hiding (delete, runMigration, (==.), (||.))
import Database.Persist.Sqlite hiding (delete, deleteWhere, insert, insertKey, runMigration, (==.), (||.))
import GHC.Err
import Internal.Types
import Internal.Utils
import RIO hiding (LogFunc, isNothing, on, (^.))
import RIO.List ((\\))
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.NonEmpty as N
import qualified RIO.Text as T
runDB
:: MonadUnliftIO m
=> SqlConfig
-> SqlQueryT (NoLoggingT m) a
-> m a
runDB c more =
runNoLoggingT $ do
pool <- mkPool c
runSqlQueryT pool $ do
_ <- lift askLoggerIO
runMigration migrateAll
more
mkPool :: (MonadLoggerIO m, MonadUnliftIO m) => SqlConfig -> m ConnectionPool
mkPool c = case c of
Sqlite p -> createSqlitePool p 10
-- conn <- open p
-- wrapConnection conn logfn
Postgres -> error "postgres not implemented"
nukeTables :: MonadSqlQuery m => m ()
nukeTables = do
deleteWhere ([] :: [Filter CommitR])
deleteWhere ([] :: [Filter CurrencyR])
deleteWhere ([] :: [Filter AccountR])
deleteWhere ([] :: [Filter TransactionR])
-- showBalances :: MonadUnliftIO m => SqlPersistT m ()
-- showBalances = do
-- xs <- select $ do
-- (accounts :& splits :& txs) <-
-- from
-- $ table @AccountR
-- `innerJoin` table @SplitR
-- `on` (\(a :& s) -> a ^. AccountRId ==. s ^. SplitRAccount)
-- `innerJoin` table @TransactionR
-- `on` (\(_ :& s :& t) -> s ^. SplitRTransaction ==. t ^. TransactionRId)
-- where_ $
-- isNothing (txs ^. TransactionRBucket)
-- &&. ( (accounts ^. AccountRFullpath `like` val "asset" ++. (%))
-- ||. (accounts ^. AccountRFullpath `like` val "liability" ++. (%))
-- )
-- groupBy (accounts ^. AccountRFullpath, accounts ^. AccountRName)
-- return
-- ( accounts ^. AccountRFullpath
-- , accounts ^. AccountRName
-- , sum_ $ splits ^. SplitRValue
-- )
-- -- TODO super stetchy table printing thingy
-- liftIO $ do
-- putStrLn $ T.unpack $ fmt "Account" "Balance"
-- putStrLn $ T.unpack $ fmt (T.replicate 60 "-") (T.replicate 15 "-")
-- mapM_ (putStrLn . T.unpack . fmtBalance) xs
-- where
-- fmtBalance (path, name, bal) = fmt (toFullPath path name) (toBal bal)
-- fmt a b = T.unwords ["| ", pad 60 a, " | ", pad 15 b, " |"]
-- pad n xs = T.append xs $ T.replicate (n - T.length xs) " "
-- toFullPath path name = T.unwords [unValue @T.Text path, "/", unValue @T.Text name]
-- toBal = maybe "???" (fmtRational 2) . unValue
hashConfig :: Config -> [Int]
hashConfig
Config_
{ budget = bs
, statements = ss
} = (hash <$> bs) ++ (hash <$> ms) ++ (hash <$> ps)
where
(ms, ps) = partitionEithers $ fmap go ss
go (HistTransfer x) = Left x
go (HistStatement x) = Right x
setDiff :: Eq a => [a] -> [a] -> ([a], [a])
-- setDiff = setDiff' (==)
setDiff as bs = (as \\ bs, bs \\ as)
-- setDiff' :: Eq a => (a -> b -> Bool) -> [a] -> [b] -> ([a], [b])
-- setDiff' f = go []
-- where
-- go inA [] bs = (inA, bs)
-- go inA as [] = (as ++ inA, [])
-- go inA (a:as) bs = case inB a bs of
-- Just bs' -> go inA as bs'
-- Nothing -> go (a:inA) as bs
-- inB _ [] = Nothing
-- inB a (b:bs)
-- | f a b = Just bs
-- | otherwise = inB a bs
getDBHashes :: MonadSqlQuery m => m [Int]
getDBHashes = fmap (commitRHash . entityVal) <$> dumpTbl
nukeDBHash :: MonadSqlQuery m => Int -> m ()
nukeDBHash h = deleteE $ do
c <- E.from E.table
E.where_ (c ^. CommitRHash ==. E.val h)
nukeDBHashes :: MonadSqlQuery m => [Int] -> m ()
nukeDBHashes = mapM_ nukeDBHash
getConfigHashes :: MonadSqlQuery m => Config -> m ([Int], [Int])
getConfigHashes c = do
let ch = hashConfig c
dh <- getDBHashes
return $ setDiff dh ch
dumpTbl :: (MonadSqlQuery m, PersistEntity r) => m [Entity r]
dumpTbl = selectE $ E.from E.table
deleteAccount :: MonadSqlQuery m => Entity AccountR -> m ()
deleteAccount e = deleteE $ do
c <- E.from $ E.table @AccountR
E.where_ (c ^. AccountRId ==. E.val k)
where
k = entityKey e
deleteCurrency :: MonadSqlQuery m => Entity CurrencyR -> m ()
deleteCurrency e = deleteE $ do
c <- E.from $ E.table @CurrencyR
E.where_ (c ^. CurrencyRId ==. E.val k)
where
k = entityKey e
deleteTag :: MonadSqlQuery m => Entity TagR -> m ()
deleteTag e = deleteE $ do
c <- E.from $ E.table @TagR
E.where_ (c ^. TagRId ==. E.val k)
where
k = entityKey e
-- TODO slip-n-slide code...
insertFull
:: (PersistRecordBackend r SqlBackend, Typeable r, MonadSqlQuery m)
=> Entity r
-> m ()
insertFull (Entity k v) = insertKey k v
currency2Record :: Currency -> Entity CurrencyR
currency2Record c@Currency {curSymbol, curFullname, curPrecision} =
Entity (toKey c) $ CurrencyR curSymbol curFullname (fromIntegral curPrecision)
currencyMap :: [Entity CurrencyR] -> CurrencyMap
currencyMap =
M.fromList
. fmap
( \e ->
( currencyRSymbol $ entityVal e
, (entityKey e, fromIntegral $ currencyRPrecision $ entityVal e)
)
)
toKey :: (ToBackendKey SqlBackend b, Hashable a) => a -> Key b
toKey = toSqlKey . fromIntegral . hash
tree2Entity :: AcntType -> [T.Text] -> T.Text -> T.Text -> Entity AccountR
tree2Entity t parents name des =
Entity (toSqlKey $ fromIntegral h) $
AccountR name (toPath parents) des
where
p = AcntPath t (reverse (name : parents))
h = hash p
toPath = T.intercalate "/" . (atName t :) . reverse
tree2Records
:: AcntType
-> AccountTree
-> ([Entity AccountR], [AccountPathR], [(AcntPath, (AccountRId, AcntSign, AcntType))])
tree2Records t = go []
where
go ps (Placeholder d n cs) =
let e = tree2Entity t (fmap snd ps) n d
k = entityKey e
(as, aps, ms) = L.unzip3 $ fmap (go ((k, n) : ps)) cs
a0 = acnt k n (fmap snd ps) d
paths = expand k $ fmap fst ps
in (a0 : concat as, paths ++ concat aps, concat ms)
go ps (Account d n) =
let e = tree2Entity t (fmap snd ps) n d
k = entityKey e
in ( [acnt k n (fmap snd ps) d]
, expand k $ fmap fst ps
, [(AcntPath t $ reverse $ n : fmap snd ps, (k, sign, t))]
)
toPath = T.intercalate "/" . (atName t :) . reverse
acnt k n ps = Entity k . AccountR n (toPath ps)
expand h0 hs = (\(h, d) -> AccountPathR h h0 d) <$> zip (h0 : hs) [0 ..]
sign = accountSign t
paths2IDs :: [(AcntPath, a)] -> [(AcntID, a)]
paths2IDs =
uncurry zip
. first trimNames
. L.unzip
. L.sortOn fst
. fmap (first pathList)
where
pathList (AcntPath t []) = atName t :| []
pathList (AcntPath t ns) = N.reverse $ atName t :| ns
-- none of these errors should fire assuming that input is sorted and unique
trimNames :: [N.NonEmpty T.Text] -> [AcntID]
trimNames = fmap (T.intercalate "_" . reverse) . trimAll 0
where
trimAll _ [] = []
trimAll i (y : ys) = case L.foldl' (matchPre i) (y, [], []) ys of
(a, [], bs) -> reverse $ trim i a : bs
(a, as, bs) -> reverse bs ++ trimAll (i + 1) (reverse $ a : as)
matchPre i (y, ys, old) new = case (y !? i, new !? i) of
(Nothing, Just _) ->
case ys of
[] -> (new, [], trim i y : old)
_ -> err "unsorted input"
(Just _, Nothing) -> err "unsorted input"
(Nothing, Nothing) -> err "duplicated inputs"
(Just a, Just b)
| a == b -> (new, y : ys, old)
| otherwise ->
let next = case ys of
[] -> [trim i y]
_ -> trimAll (i + 1) (reverse $ y : ys)
in (new, [], reverse next ++ old)
trim i = N.take (i + 1)
err msg = errorWithoutStackTrace $ "Import.Database.Ops.hs: " ++ msg
(!?) :: N.NonEmpty a -> Int -> Maybe a
xs !? n
| n < 0 = Nothing
-- Definition adapted from GHC.List
| otherwise =
foldr
( \x r k -> case k of
0 -> Just x
_ -> r (k - 1)
)
(const Nothing)
xs
n
flattenAcntRoot :: AccountRoot -> [(AcntType, AccountTree)]
flattenAcntRoot AccountRoot_ {arIncome, arExpenses, arLiabilities, arAssets, arEquity} =
((IncomeT,) <$> arIncome)
++ ((ExpenseT,) <$> arExpenses)
++ ((LiabilityT,) <$> arLiabilities)
++ ((AssetT,) <$> arAssets)
++ ((EquityT,) <$> arEquity)
indexAcntRoot :: AccountRoot -> ([Entity AccountR], [AccountPathR], AccountMap)
indexAcntRoot r =
( concat ars
, concat aprs
, M.fromList $ paths2IDs $ concat ms
)
where
(ars, aprs, ms) = L.unzip3 $ uncurry tree2Records <$> flattenAcntRoot r
getDBState
:: (MonadInsertError m, MonadSqlQuery m)
=> Config
-> m (FilePath -> DBState)
getDBState c = do
(del, new) <- getConfigHashes c
-- TODO not sure how I feel about this, probably will change this struct alot
-- in the future so whatever...for now
combineError bi si $ \b s f ->
-- TODO this can be cleaned up, half of it is meant to be queried when
-- determining how to insert budgets/history and the rest is just
-- holdover data to delete upon successful insertion
DBState
{ kmCurrency = currencyMap cs
, kmAccount = am
, kmBudgetInterval = b
, kmStatementInterval = s
, kmNewCommits = new
, kmOldCommits = del
, kmConfigDir = f
, kmTag = tagMap ts
, kmTagAll = ts
, kmAcntPaths = paths
, kmAcntsOld = acnts
, kmCurrenciesOld = cs
}
where
bi = liftExcept $ resolveBounds $ budgetInterval $ global c
si = liftExcept $ resolveBounds $ statementInterval $ global c
(acnts, paths, am) = indexAcntRoot $ accounts c
cs = currency2Record <$> currencies c
ts = toRecord <$> tags c
toRecord t@Tag {tagID, tagDesc} = Entity (toKey t) $ TagR tagID tagDesc
tagMap = M.fromList . fmap (\e -> (tagRSymbol $ entityVal e, entityKey e))
updateHashes :: (MonadFinance m, MonadSqlQuery m) => m ()
updateHashes = do
old <- askDBState kmOldCommits
nukeDBHashes old
updateTags :: (MonadFinance m, MonadSqlQuery m) => m ()
updateTags = do
tags <- askDBState kmTagAll
tags' <- selectE $ E.from $ E.table @TagR
let (toIns, toDel) = setDiff tags tags'
mapM_ deleteTag toDel
mapM_ insertFull toIns
updateAccounts :: (MonadFinance m, MonadSqlQuery m) => m ()
updateAccounts = do
acnts <- askDBState kmAcntsOld
paths <- askDBState kmAcntPaths
acnts' <- dumpTbl
let (toIns, toDel) = setDiff acnts acnts'
deleteWhere ([] :: [Filter AccountPathR])
mapM_ deleteAccount toDel
mapM_ insertFull toIns
mapM_ insert paths
updateCurrencies :: (MonadFinance m, MonadSqlQuery m) => m ()
updateCurrencies = do
curs <- askDBState kmCurrenciesOld
curs' <- selectE $ E.from $ E.table @CurrencyR
let (toIns, toDel) = setDiff curs curs'
mapM_ deleteCurrency toDel
mapM_ insertFull toIns
updateDBState :: (MonadFinance m, MonadSqlQuery m) => m ()
updateDBState = do
updateHashes
updateTags
updateAccounts
updateCurrencies
deleteE :: (MonadSqlQuery m) => E.SqlQuery () -> m ()
deleteE q = unsafeLiftSql "esqueleto-delete" (E.delete q)
selectE :: (MonadSqlQuery m, SqlSelect a r) => E.SqlQuery a -> m [r]
selectE q = unsafeLiftSql "esqueleto-select" (E.select q)

View File

@ -1,567 +0,0 @@
module Internal.History
( readHistStmt
, readHistTransfer
, splitHistory
, readHistoryCRUD
)
where
import Control.Monad.Except
import Data.Csv
import Data.Decimal
import Data.Foldable
import Data.Hashable
import GHC.Real
import Internal.Types.Main
import Internal.Utils
import RIO hiding (to)
import qualified RIO.ByteString.Lazy as BL
import RIO.FilePath
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.Text as T
import RIO.Time
import qualified RIO.Vector as V
import Text.Regex.TDFA hiding (matchAll)
readHistoryCRUD
:: (MonadUnliftIO m, MonadFinance m)
=> FilePath
-> PreHistoryCRUD
-> m FinalHistoryCRUD
readHistoryCRUD root o@CRUDOps {coCreate = (ts, ss)} = do
-- TODO multithread this for some extra fun :)
ss' <- mapErrorsIO (readHistStmt root) ss
fromEitherM $ runExceptT $ do
let sRes = mapErrors (ExceptT . return) ss'
let tRes = mapErrors readHistTransfer ts
combineError sRes tRes $ \ss'' ts' -> o {coCreate = concat ss'' ++ concat ts'}
-- NOTE keep statement and transfer readers separate because the former needs
-- the IO monad, and thus will throw IO errors rather than using the ExceptT
-- thingy
splitHistory :: [History] -> ([PairedTransfer], [Statement])
splitHistory = partitionEithers . fmap go
where
go (HistTransfer x) = Left x
go (HistStatement x) = Right x
--------------------------------------------------------------------------------
-- Transfers
readHistTransfer
:: (MonadAppError m, MonadFinance m)
=> PairedTransfer
-> m [Tx CommitR]
readHistTransfer ht = do
bounds <- asks (unHSpan . tsHistoryScope)
expandTransfer c bounds ht
where
c = CommitR (CommitHash $ hash ht) CTHistoryTransfer
--------------------------------------------------------------------------------
-- Statements
readHistStmt
:: (MonadUnliftIO m, MonadFinance m)
=> FilePath
-> Statement
-> m (Either AppException [Tx CommitR])
readHistStmt root i = do
bounds <- asks (unHSpan . tsHistoryScope)
bs <- readImport root i
return $ filter (inDaySpan bounds . txmDate . txMeta) . fmap go <$> bs
where
go t@Tx {txMeta = m} =
t {txMeta = m {txmCommit = CommitR (CommitHash $ hash i) CTHistoryStatement}}
-- TODO this probably won't scale well (pipes?)
readImport
:: (MonadUnliftIO m, MonadFinance m)
=> FilePath
-> Statement
-> m (Either AppException [Tx ()])
readImport root Statement {stmtTxOpts, stmtParsers, stmtSkipLines, stmtDelim, stmtPaths} = do
let ores = compileOptions stmtTxOpts
let cres = combineErrors $ compileMatch <$> stmtParsers
(compiledOptions, compiledMatches) <- liftIOExcept $ combineError ores cres (,)
let readStmt = readImport_ stmtSkipLines stmtDelim compiledOptions
records <- L.sort . concat <$> mapErrorsIO readStmt paths
runExceptT (matchRecords compiledMatches records)
where
paths = (root </>) <$> stmtPaths
readImport_
:: MonadUnliftIO m
=> Natural
-> Word
-> TxOptsRe
-> FilePath
-> m [TxRecord]
readImport_ n delim tns p = do
res <- tryIO $ BL.readFile p
bs <- fromEither $ first (AppException . (: []) . StatementIOError . tshow) res
case decodeByNameWithP (parseTxRecord p tns) opts $ skip bs of
Left m -> throwIO $ AppException [ParseError $ T.pack m]
Right (_, v) -> return $ catMaybes $ V.toList v
where
opts = defaultDecodeOptions {decDelimiter = fromIntegral delim}
skip = BL.intercalate "\n" . L.drop (fromIntegral n) . BL.split 10
-- TODO handle this better, this maybe thing is a hack to skip lines with
-- blank dates but will likely want to make this more flexible
parseTxRecord :: FilePath -> TxOptsRe -> NamedRecord -> Parser (Maybe TxRecord)
parseTxRecord
p
TxOpts
{ toDate
, toDesc
, toAmount
, toOther
, toDateFmt
, toSkipBlankDate
, toSkipBlankAmount
, toSkipBlankDescription
, toSkipBlankOther
, toSkipMissingFields
}
r =
do
-- TODO this is confusing as hell
--
-- try and parse all fields; if a parse fails, either trip an error
-- or return a Nothing if we want to deliberately skip missing fields
d <- getField toDate
e <- getField toDesc
os <-
fmap M.fromList . sequence
<$> mapM (\n -> fmap (n,) <$> getField n) toOther
(af, ax) <- case toAmount of
-- the amount column is extra confusing because it can either be one
-- or two columns, so keep track of this with a maybe
AmountSingle TxAmount1 {a1Column, a1Fmt} -> do
f <- getField a1Column
return (a1Fmt, Right <$> f)
AmountDual TxAmount2 {a2Positive, a2Negative, a2Fmt} -> do
f1 <- getField a2Positive
f2 <- getField a2Negative
return $ (a2Fmt,) $ case (f1, f2) of
(Just a, Just b) -> Just $ Left (a, b)
_ -> Nothing
case (d, e, os, ax) of
-- If all lookups were successful, check that none of the fields are
-- blank, and if they are return nothing to skip this line
(Just d', Just e', Just os', Just ax') ->
if (toSkipBlankDate && d' == "")
|| (toSkipBlankDescription && e' == "")
|| (toSkipBlankAmount && (ax' == Right "" || ax' == Left ("", "")))
|| elem "" (mapMaybe (`M.lookup` os') toSkipBlankOther)
then return Nothing
else -- if we are skipping nothing, proceed to parse the date and amount
-- columns
do
a <- case ax' of
Right a -> parseDecimal True af a
Left ("", a) -> ((-1) *) <$> parseDecimal False af a
Left (a, _) -> parseDecimal False af a
d'' <- parseTimeM True defaultTimeLocale (T.unpack toDateFmt) d'
return $ Just $ TxRecord d'' a e' os' p
-- if no lookups succeeded, return nothing to skip this line. Note that
-- a parse fail will trigger a failure error further up, so that case
-- is already dealt with implicitly
_ -> return Nothing
where
getField :: FromField a => T.Text -> Parser (Maybe a)
getField f = case runParser $ r .: T.encodeUtf8 f of
Left err -> if toSkipMissingFields then return Nothing else fail err
Right x -> return $ Just x
matchRecords :: MonadFinance m => [StatementParserRe] -> [TxRecord] -> AppExceptT m [Tx ()]
matchRecords ms rs = do
(matched, unmatched, notfound) <- matchAll (matchPriorities ms) rs
case (matched, unmatched, notfound) of
(ms_, [], []) -> return ms_
(_, us, ns) -> throwError $ AppException [StatementError us ns]
matchPriorities :: [StatementParserRe] -> [MatchGroup]
matchPriorities =
fmap matchToGroup
. L.groupBy (\a b -> spPriority a == spPriority b)
. L.sortOn (Down . spPriority)
matchToGroup :: [StatementParserRe] -> MatchGroup
matchToGroup ms =
uncurry MatchGroup $
first (L.sortOn spDate) $
L.partition (isJust . spDate) ms
data MatchGroup = MatchGroup
{ mgDate :: ![StatementParserRe]
, mgNoDate :: ![StatementParserRe]
}
deriving (Show)
data Zipped a = Zipped ![a] ![a]
data Unzipped a = Unzipped ![a] ![a] ![a]
initZipper :: [a] -> Zipped a
initZipper = Zipped []
resetZipper :: Zipped a -> Zipped a
resetZipper = initZipper . recoverZipper
recoverZipper :: Zipped a -> [a]
recoverZipper (Zipped as bs) = reverse as ++ bs
zipperSlice
:: (a -> b -> Ordering)
-> b
-> Zipped a
-> Either (Zipped a) (Unzipped a)
zipperSlice f x = go
where
go z@(Zipped _ []) = Left z
go z@(Zipped bs (a : as)) =
case f a x of
GT -> go $ Zipped (a : bs) as
EQ -> Right $ goEq (Unzipped bs [a] as)
LT -> Left z
goEq z@(Unzipped _ _ []) = z
goEq z@(Unzipped bs cs (a : as)) =
case f a x of
GT -> goEq $ Unzipped (a : bs) cs as
EQ -> goEq $ Unzipped bs (a : cs) as
LT -> z
zipperMatch
:: MonadFinance m
=> Unzipped StatementParserRe
-> TxRecord
-> AppExceptT m (Zipped StatementParserRe, MatchRes (Tx ()))
zipperMatch (Unzipped bs cs as) x = go [] cs
where
go _ [] = return (Zipped bs $ cs ++ as, MatchFail)
go prev (m : ms) = do
res <- matches m x
case res of
MatchFail -> go (m : prev) ms
skipOrPass ->
let ps = reverse prev
ms' = maybe ms (: ms) (matchDec m)
in return (Zipped bs $ ps ++ ms' ++ as, skipOrPass)
zipperMatch'
:: MonadFinance m
=> Zipped StatementParserRe
-> TxRecord
-> AppExceptT m (Zipped StatementParserRe, MatchRes (Tx ()))
zipperMatch' z x = go z
where
go (Zipped bs (a : as)) = do
res <- matches a x
case res of
MatchFail -> go (Zipped (a : bs) as)
skipOrPass ->
return (Zipped (maybe bs (: bs) $ matchDec a) as, skipOrPass)
go z' = return (z', MatchFail)
matchDec :: StatementParserRe -> Maybe StatementParserRe
matchDec m = case spTimes m of
Just 1 -> Nothing
Just n -> Just $ m {spTimes = Just $ n - 1}
Nothing -> Just m
matchAll
:: MonadFinance m
=> [MatchGroup]
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchAll = go ([], [])
where
go (matched, unused) gs rs = case (gs, rs) of
(_, []) -> return (matched, [], unused)
([], _) -> return (matched, rs, unused)
(g : gs', _) -> do
(ts, unmatched, us) <- matchGroup g rs
go (ts ++ matched, us ++ unused) gs' unmatched
matchGroup
:: MonadFinance m
=> MatchGroup
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchGroup MatchGroup {mgDate = ds, mgNoDate = ns} rs = do
(md, rest, ud) <- matchDates ds rs
(mn, unmatched, un) <- matchNonDates ns rest
return (md ++ mn, unmatched, filter ((/= Nothing) . spTimes) $ ud ++ un)
matchDates
:: MonadFinance m
=> [StatementParserRe]
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchDates ms = go ([], [], initZipper ms)
where
go (matched, unmatched, z) [] =
return
( catMaybes matched
, reverse unmatched
, recoverZipper z
)
go (matched, unmatched, z) (r : rs) =
case zipperSlice findDate r z of
Left zipped -> go (matched, r : unmatched, zipped) rs
Right unzipped -> do
(z', res) <- zipperMatch unzipped r
let (m, u) = case res of
(MatchPass p) -> (Just p : matched, unmatched)
MatchSkip -> (Nothing : matched, unmatched)
MatchFail -> (matched, r : unmatched)
go (m, u, z') rs
findDate m r = maybe EQ (`compareDate` trDate r) $ spDate m
matchNonDates
:: MonadFinance m
=> [StatementParserRe]
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchNonDates ms = go ([], [], initZipper ms)
where
go (matched, unmatched, z) [] =
return
( catMaybes matched
, reverse unmatched
, recoverZipper z
)
go (matched, unmatched, z) (r : rs) = do
(z', res) <- zipperMatch' z r
let (m, u) = case res of
MatchPass p -> (Just p : matched, unmatched)
MatchSkip -> (Nothing : matched, unmatched)
MatchFail -> (matched, r : unmatched)
in go (m, u, resetZipper z') rs
matches
:: MonadFinance m
=> StatementParserRe
-> TxRecord
-> AppExceptT m (MatchRes (Tx ()))
matches
StatementParser {spTx, spOther, spVal, spDate, spDesc, spPriority}
r@TxRecord {trDate, trAmount, trDesc, trOther} = do
res <- liftInner $
combineError3 val other desc $
\x y z -> x && y && z && date
if res
then maybe (return MatchSkip) convert spTx
else return MatchFail
where
val = valMatches spVal $ toRational trAmount
date = maybe True (`dateMatches` trDate) spDate
other = foldM (\a o -> (a &&) <$> otherMatches trOther o) True spOther
desc = maybe (return True) (matchMaybe (unTxDesc trDesc) . snd) spDesc
convert tg = MatchPass <$> toTx (fromIntegral spPriority) tg r
toTx :: MonadFinance m => Int -> TxGetter -> TxRecord -> AppExceptT m (Tx ())
toTx
priority
TxGetter
{ tgFrom
, tgTo
, tgCurrency
, tgOtherEntries
, tgScale
}
r@TxRecord {trAmount, trDate, trDesc} = do
combineError curRes subRes $ \(cur, f, t) ss ->
Tx
{ txMeta = TxMeta trDate priority trDesc ()
, txPrimary =
Left $
EntrySet
{ esTotalValue = roundToP (cpPrec cur) trAmount *. tgScale
, esCurrency = cpID cur
, esFrom = f
, esTo = t
}
, txOther = Left <$> ss
}
where
curRes = do
m <- asks tsCurrencyMap
cur <- liftInner $ resolveCurrency m r tgCurrency
let prec = cpPrec cur
let fromRes = liftInner $ resolveHalfEntry resolveFromValue prec r () tgFrom
let toRes = liftInner $ resolveHalfEntry resolveToValue prec r () tgTo
combineError fromRes toRes (cur,,)
subRes = mapErrors (resolveSubGetter r) tgOtherEntries
resolveSubGetter
:: MonadFinance m
=> TxRecord
-> TxSubGetter
-> AppExceptT m SecondayEntrySet
resolveSubGetter r TxSubGetter {tsgFrom, tsgTo, tsgValue, tsgCurrency} = do
m <- asks tsCurrencyMap
cur <- liftInner $ resolveCurrency m r tsgCurrency
let prec = cpPrec cur
let toRes = resolveHalfEntry resolveToValue prec r () tsgTo
let valRes = liftInner $ resolveValue prec r tsgValue
liftInner $ combineErrorM toRes valRes $ \t v -> do
f <- resolveHalfEntry resolveFromValue prec r v tsgFrom
return $
EntrySet
{ esTotalValue = ()
, esCurrency = cpID cur
, esFrom = f
, esTo = t
}
resolveHalfEntry
:: (Precision -> TxRecord -> n -> AppExcept v')
-> Precision
-> TxRecord
-> v
-> TxHalfGetter (EntryGetter n)
-> AppExcept (HalfEntrySet v v')
resolveHalfEntry f prec r v TxHalfGetter {thgAcnt, thgComment, thgTags, thgEntries} =
combineError acntRes esRes $ \a es ->
HalfEntrySet
{ hesPrimary =
Entry
{ eAcnt = a
, eValue = v
, eComment = thgComment
, eTags = thgTags
}
, hesOther = es
}
where
acntRes = resolveAcnt r thgAcnt
esRes = mapErrors (resolveEntry f prec r) thgEntries
otherMatches :: M.Map T.Text T.Text -> FieldMatcherRe -> AppExcept Bool
otherMatches dict m = case m of
Val (Field n mv) -> valMatches mv =<< (readRational =<< lookup_ MatchNumeric n)
Desc (Field n (_, md)) -> (`matchMaybe` md) =<< lookup_ MatchText n
where
lookup_ t n = lookupErr (MatchField t) n dict
resolveEntry
:: (Precision -> TxRecord -> n -> AppExcept v)
-> Precision
-> TxRecord
-> EntryGetter n
-> AppExcept (Entry AcntID v TagID)
resolveEntry f prec r s@Entry {eAcnt, eValue} =
combineError acntRes valRes $ \a v -> s {eAcnt = a, eValue = v}
where
acntRes = resolveAcnt r eAcnt
valRes = f prec r eValue
resolveFromValue :: Precision -> TxRecord -> EntryNumGetter -> AppExcept EntryValue
resolveFromValue = resolveValue
resolveToValue :: Precision -> TxRecord -> LinkedEntryNumGetter -> AppExcept EntryLink
resolveToValue _ _ (Linked l) = return $ LinkIndex l
resolveToValue prec r (Getter g) = LinkValue <$> resolveValue prec r g
resolveValue :: Precision -> TxRecord -> EntryNumGetter -> AppExcept EntryValue
resolveValue prec TxRecord {trOther, trAmount} s = case s of
(LookupN t) -> EntryFixed . go <$> (readDouble =<< lookupErr EntryValField t trOther)
(ConstN c) -> return $ EntryFixed $ go c
AmountN m -> return $ EntryFixed $ trAmount *. m
BalanceN x -> return $ EntryBalance $ go x
PercentN x -> return $ EntryPercent x
where
go = realFracToDecimalP prec
resolveAcnt :: TxRecord -> EntryAcnt -> AppExcept AcntID
resolveAcnt r e = AcntID <$> resolveEntryField AcntField r (unAcntID <$> e)
resolveCurrency :: CurrencyMap -> TxRecord -> EntryCur -> AppExcept CurrencyPrec
resolveCurrency m r c = do
i <- resolveEntryField CurField r (unCurID <$> c)
case M.lookup (CurID i) m of
Just k -> return k
Nothing -> throwError $ AppException [LookupError (DBKey CurField) i]
resolveEntryField :: EntryIDType -> TxRecord -> EntryTextGetter T.Text -> AppExcept T.Text
resolveEntryField t TxRecord {trOther = o} s = case s of
ConstT p -> return p
LookupT f -> lookup_ f o
MapT (Field f m) -> do
k <- lookup_ f o
lookup_ k m
Map2T (Field (f1, f2) m) -> do
(k1, k2) <- combineError (lookup_ f1 o) (lookup_ f2 o) (,)
lookup_ (k1, k2) m
where
lookup_ :: (Ord k, Show k) => k -> M.Map k v -> AppExcept v
lookup_ = lookupErr (EntryIDField t)
readDouble :: T.Text -> AppExcept Double
readDouble s = case readMaybe $ T.unpack s of
Just x -> return x
Nothing -> throwError $ AppException [ConversionError s True]
readRational :: T.Text -> AppExcept Rational
readRational s = case T.split (== '.') s of
[x] -> maybe err (return . fromInteger) $ readT x
[x, y] -> case (readT x, readT y) of
(Just x', Just y') ->
let p = 10 ^ T.length y
k = if x' >= 0 then 1 else -1
in return $ fromInteger x' + k * y' % p
_ -> err
_ -> err
where
readT = readMaybe . T.unpack
err = throwError $ AppException [ConversionError s False]
compileOptions :: TxOpts T.Text -> AppExcept TxOptsRe
compileOptions = mapM (compileRegex True)
-- compileOptions o@TxOpts {toAmount = pat} = case pat of
-- AmountSingle (TxAmount1 {a1Fmt}) -> do
-- re <- compileRegex True a1Fmt
-- return $ o {toAmountFmt = re}
-- AmountDual (TxAmount2 {a2Fmt}) -> do
-- re <- compileRegex True a2Fmt
-- return $ o {toAmountFmt = re}
compileMatch :: StatementParser T.Text -> AppExcept StatementParserRe
compileMatch m@StatementParser {spDesc, spOther} = do
combineError dres ores $ \d os -> m {spDesc = d, spOther = os}
where
go = compileRegex False
dres = mapM go spDesc
ores = combineErrors $ fmap (mapM go) spOther
parseDecimal :: MonadFail m => Bool -> (T.Text, Regex) -> T.Text -> m Decimal
parseDecimal wantSign (pat, re) s = case (wantSign, matchGroupsMaybe s re) of
(True, [sign, num]) -> do
k <- readSign sign
x <- readNum num
return $ k * x
(False, [num]) -> readNum num
_ -> msg "malformed decimal"
where
msg :: MonadFail m => T.Text -> m a
msg m =
fail $
T.unpack $
T.unwords [m, "-", keyVals [("pattern", pat), ("query", s)]]
readSign x
| x == "-" = return (-1)
| x == "+" || x == "" = return 1
| otherwise = msg $ T.append "invalid sign: " x
readNum x =
maybe
(msg $ T.unwords ["could not parse", singleQuote x])
return
$ readMaybe
$ T.unpack
$ T.filter (/= ',') x

789
lib/Internal/Insert.hs Normal file
View File

@ -0,0 +1,789 @@
module Internal.Insert
( insertBudget
, splitHistory
, insertHistTransfer
, readHistStmt
, insertHistStmt
)
where
import Control.Monad.Except
import Data.Hashable
import Database.Persist.Monad
import Internal.Statement
import Internal.Types
import Internal.Utils
import RIO hiding (to)
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.NonEmpty as NE
import qualified RIO.Text as T
import RIO.Time
--------------------------------------------------------------------------------
-- intervals
expandDatePat :: Bounds -> DatePat -> InsertExcept [Day]
expandDatePat b (Cron cp) = expandCronPat b cp
expandDatePat i (Mod mp) = return $ expandModPat mp i
expandModPat :: ModPat -> Bounds -> [Day]
expandModPat ModPat {mpStart = s, mpBy = b, mpUnit = u, mpRepeats = r} bs =
takeWhile (<= upper) $
(`addFun` start) . (* b')
<$> maybe id (take . fromIntegral) r [0 ..]
where
(lower, upper) = expandBounds bs
start = maybe lower fromGregorian' s
b' = fromIntegral b
addFun = case u of
Day -> addDays
Week -> addDays . (* 7)
Month -> addGregorianMonthsClip
Year -> addGregorianYearsClip
expandCronPat :: Bounds -> CronPat -> InsertExcept [Day]
expandCronPat b CronPat {cpYear, cpMonth, cpDay, cpWeekly} =
combineError3 yRes mRes dRes $ \ys ms ds ->
filter validWeekday $
mapMaybe (uncurry3 toDay) $
takeWhile (\((y, _), m, d) -> (y, m, d) <= (yb1, mb1, db1)) $
dropWhile (\((y, _), m, d) -> (y, m, d) < (yb0, mb0, db0)) $
[(y, m, d) | y <- (\y -> (y, isLeapYear y)) <$> ys, m <- ms, d <- ds]
where
yRes = case cpYear of
Nothing -> return [yb0 .. yb1]
Just pat -> do
ys <- expandMDYPat (fromIntegral yb0) (fromIntegral yb1) pat
return $ dropWhile (< yb0) $ fromIntegral <$> ys
mRes = expandMD 12 cpMonth
dRes = expandMD 31 cpDay
(s, e) = expandBounds b
(yb0, mb0, db0) = toGregorian s
(yb1, mb1, db1) = toGregorian $ addDays (-1) e
expandMD lim =
fmap (fromIntegral <$>)
. maybe (return [1 .. lim]) (expandMDYPat 1 lim)
expandW (OnDay x) = [fromEnum x]
expandW (OnDays xs) = fromEnum <$> xs
ws = maybe [] expandW cpWeekly
validWeekday = if null ws then const True else \day -> dayToWeekday day `elem` ws
toDay (y, leap) m d
| m == 2 && (not leap && d > 28 || leap && d > 29) = Nothing
| m `elem` [4, 6, 9, 11] && d > 30 = Nothing
| otherwise = Just $ fromGregorian y m d
expandMDYPat :: Natural -> Natural -> MDYPat -> InsertExcept [Natural]
expandMDYPat lower upper (Single x) = return [x | lower <= x && x <= upper]
expandMDYPat lower upper (Multi xs) = return $ dropWhile (<= lower) $ takeWhile (<= upper) xs
expandMDYPat lower upper (After x) = return [max lower x .. upper]
expandMDYPat lower upper (Before x) = return [lower .. min upper x]
expandMDYPat lower upper (Between x y) = return [max lower x .. min upper y]
expandMDYPat lower upper (Repeat RepeatPat {rpStart = s, rpBy = b, rpRepeats = r})
| b < 1 = throwError $ InsertException [PatternError s b r ZeroLength]
| otherwise = do
k <- limit r
return $ dropWhile (<= lower) $ takeWhile (<= k) [s + i * b | i <- [0 ..]]
where
limit Nothing = return upper
limit (Just n)
-- this guard not only produces the error for the user but also protects
-- from an underflow below it
| n < 1 = throwError $ InsertException [PatternError s b r ZeroRepeats]
| otherwise = return $ min (s + b * (n - 1)) upper
dayToWeekday :: Day -> Int
dayToWeekday (ModifiedJulianDay d) = mod (fromIntegral d + 2) 7
withDates
:: (MonadSqlQuery m, MonadFinance m, MonadInsertError m)
=> DatePat
-> (Day -> m a)
-> m [a]
withDates dp f = do
bounds <- askDBState kmBudgetInterval
days <- liftExcept $ expandDatePat bounds dp
combineErrors $ fmap f days
foldDates
:: (MonadSqlQuery m, MonadFinance m, MonadInsertError m)
=> DatePat
-> Day
-> (Day -> Day -> m a)
-> m [a]
foldDates dp start f = do
bounds <- askDBState kmBudgetInterval
days <- liftExcept $ expandDatePat bounds dp
combineErrors $
snd $
L.mapAccumL (\prevDay day -> (day, f prevDay day)) start days
--------------------------------------------------------------------------------
-- budget
-- each budget (designated at the top level by a 'name') is processed in the
-- following steps
-- 1. expand all transactions given the desired date range and date patterns for
-- each directive in the budget
-- 2. sort all transactions by date
-- 3. propagate all balances forward, and while doing so assign values to each
-- transaction (some of which depend on the 'current' balance of the
-- target account)
-- 4. assign shadow transactions (TODO)
-- 5. insert all transactions
insertBudget
:: (MonadInsertError m, MonadSqlQuery m, MonadFinance m)
=> Budget
-> m ()
insertBudget
b@Budget
{ bgtLabel
, bgtIncomes
, bgtTransfers
, bgtShadowTransfers
, bgtPretax
, bgtTax
, bgtPosttax
} =
whenHash CTBudget b () $ \key -> do
intAllos <- combineError3 pre_ tax_ post_ (,,)
let res1 = mapErrors (insertIncome key bgtLabel intAllos) bgtIncomes
let res2 = expandTransfers key bgtLabel bgtTransfers
txs <- combineError (concat <$> res1) res2 (++)
m <- askDBState kmCurrency
shadow <- liftExcept $ addShadowTransfers m bgtShadowTransfers txs
void $ mapErrors insertBudgetTx $ balanceTransfers $ txs ++ shadow
where
pre_ = sortAllos bgtPretax
tax_ = sortAllos bgtTax
post_ = sortAllos bgtPosttax
sortAllos = liftExcept . combineErrors . fmap sortAllo
type BoundAllocation = Allocation (Day, Day)
type IntAllocations =
( [BoundAllocation PretaxValue]
, [BoundAllocation TaxValue]
, [BoundAllocation PosttaxValue]
)
-- TODO this should actually error if there is no ultimate end date?
sortAllo :: MultiAllocation v -> InsertExcept (BoundAllocation v)
sortAllo a@Allocation {alloAmts = as} = do
bs <- foldBounds [] $ L.sortOn amtWhen as
return $ a {alloAmts = reverse bs}
where
foldBounds acc [] = return acc
foldBounds acc (x : xs) = do
let start = amtWhen x
res <- case xs of
[] -> resolveBounds start
(y : _) -> resolveBounds_ (intStart $ amtWhen y) start
foldBounds (x {amtWhen = expandBounds res} : acc) xs
-- TODO this is going to be O(n*m), which might be a problem?
addShadowTransfers
:: CurrencyMap
-> [ShadowTransfer]
-> [UnbalancedTransfer]
-> InsertExcept [UnbalancedTransfer]
addShadowTransfers cm ms txs =
fmap catMaybes $
combineErrors $
fmap (uncurry (fromShadow cm)) $
[(t, m) | t <- txs, m <- ms]
fromShadow
:: CurrencyMap
-> UnbalancedTransfer
-> ShadowTransfer
-> InsertExcept (Maybe UnbalancedTransfer)
fromShadow cm tx t@ShadowTransfer {stFrom, stTo, stDesc, stRatio, stCurrency, stType} = do
res <- shadowMatches (stMatch t) tx
v <- roundPrecisionCur (initialCurrency stCurrency) cm stRatio
return $
if not res
then Nothing
else
Just $
-- TODO does this actually share the same metadata as the "parent" tx?
FlatTransfer
{ cbtMeta = cbtMeta tx
, cbtWhen = cbtWhen tx
, cbtCur = stCurrency
, cbtFrom = stFrom
, cbtTo = stTo
, cbtValue = UnbalancedValue stType $ v * cvValue (cbtValue tx)
, cbtDesc = stDesc
}
shadowMatches :: TransferMatcher -> UnbalancedTransfer -> InsertExcept Bool
shadowMatches TransferMatcher {tmFrom, tmTo, tmDate, tmVal} tx = do
valRes <- valMatches tmVal $ cvValue $ cbtValue tx
return $
memberMaybe (taAcnt $ cbtFrom tx) tmFrom
&& memberMaybe (taAcnt $ cbtTo tx) tmTo
&& maybe True (`dateMatches` cbtWhen tx) tmDate
&& valRes
where
memberMaybe x AcntSet {asList, asInclude} =
(if asInclude then id else not) $ x `elem` asList
balanceTransfers :: [UnbalancedTransfer] -> [BalancedTransfer]
balanceTransfers = snd . L.mapAccumR go M.empty . reverse . L.sortOn cbtWhen
where
go bals f@FlatTransfer {cbtFrom, cbtTo, cbtValue = UnbalancedValue {cvValue, cvType}} =
let balTo = M.findWithDefault 0 cbtTo bals
x = amtToMove balTo cvType cvValue
bals' = mapAdd_ cbtTo x $ mapAdd_ cbtFrom (-x) bals
in (bals', f {cbtValue = x})
-- TODO might need to query signs to make this intuitive; as it is this will
-- probably work, but for credit accounts I might need to supply a negative
-- target value
amtToMove _ BTFixed x = x
amtToMove bal BTPercent x = -(x / 100 * bal)
amtToMove bal BTTarget x = x - bal
mapAdd_ :: (Ord k, Num v) => k -> v -> M.Map k v -> M.Map k v
mapAdd_ k v = M.alter (maybe (Just v) (Just . (+ v))) k
data BudgetMeta = BudgetMeta
{ bmCommit :: !CommitRId
, bmName :: !T.Text
}
deriving (Show)
data FlatTransfer v = FlatTransfer
{ cbtFrom :: !TaggedAcnt
, cbtTo :: !TaggedAcnt
, cbtValue :: !v
, cbtWhen :: !Day
, cbtDesc :: !T.Text
, cbtMeta :: !BudgetMeta
, cbtCur :: !BudgetCurrency
}
deriving (Show)
data UnbalancedValue = UnbalancedValue
{ cvType :: !BudgetTransferType
, cvValue :: !Rational
}
deriving (Show)
type UnbalancedTransfer = FlatTransfer UnbalancedValue
type BalancedTransfer = FlatTransfer Rational
insertIncome
:: (MonadInsertError m, MonadSqlQuery m, MonadFinance m)
=> CommitRId
-> T.Text
-> IntAllocations
-> Income
-> m [UnbalancedTransfer]
insertIncome
key
name
(intPre, intTax, intPost)
Income
{ incWhen
, incCurrency
, incFrom
, incPretax
, incPosttax
, incTaxes
, incToBal
, incGross
, incPayPeriod
} = do
-- TODO check that the other accounts are not income somewhere here
_ <- checkAcntType IncomeT $ taAcnt incFrom
precision <- lookupCurrencyPrec incCurrency
let gross = roundPrecision precision incGross
-- TODO this will scan the interval allocations fully each time
-- iteration which is a total waste, but the fix requires turning this
-- loop into a fold which I don't feel like doing now :(
res <- foldDates incWhen start (allocate precision gross)
return $ concat res
where
start = fromGregorian' $ pStart incPayPeriod
pType' = pType incPayPeriod
meta = BudgetMeta key name
flatPre = concatMap flattenAllo incPretax
flatTax = concatMap flattenAllo incTaxes
flatPost = concatMap flattenAllo incPosttax
sumAllos = sum . fmap faValue
-- TODO ensure these are all the "correct" accounts
allocate precision gross prevDay day = do
scaler <- liftExcept $ periodScaler pType' prevDay day
let (preDeductions, pre) =
allocatePre precision gross $
flatPre ++ concatMap (selectAllos day) intPre
tax =
allocateTax precision gross preDeductions scaler $
flatTax ++ concatMap (selectAllos day) intTax
aftertaxGross = sumAllos $ tax ++ pre
post =
allocatePost precision aftertaxGross $
flatPost ++ concatMap (selectAllos day) intPost
balance = aftertaxGross - sumAllos post
bal =
FlatTransfer
{ cbtMeta = meta
, cbtWhen = day
, cbtFrom = incFrom
, cbtCur = NoX incCurrency
, cbtTo = incToBal
, cbtValue = UnbalancedValue BTFixed balance
, cbtDesc = "balance after deductions"
}
in if balance < 0
then throwError $ InsertException [IncomeError day name balance]
else return (bal : fmap (allo2Trans meta day incFrom) (pre ++ tax ++ post))
type PeriodScaler = Natural -> Double -> Double
-- TODO we probably don't need to check for 1/0 each time
periodScaler
:: PeriodType
-> Day
-> Day
-> InsertExcept PeriodScaler
periodScaler pt prev cur = do
n <- workingDays wds prev cur
return $ scale (fromIntegral n)
where
wds = case pt of
Hourly HourlyPeriod {hpWorkingDays} -> hpWorkingDays
Daily ds -> ds
scale n precision x = case pt of
Hourly HourlyPeriod {hpAnnualHours, hpDailyHours} ->
fromRational (rnd $ x / fromIntegral hpAnnualHours)
* fromIntegral hpDailyHours
* n
Daily _ -> x * n / 365.25
where
rnd = roundPrecision precision
workingDays :: [Weekday] -> Day -> Day -> InsertExcept Natural
workingDays wds start end
| interval > 0 =
let (nFull, nPart) = divMod interval 7
daysFull = fromIntegral (length wds') * nFull
daysTail = fromIntegral $ length $ takeWhile (< nPart) wds'
in return $ fromIntegral $ daysFull + daysTail
| otherwise = throwError $ InsertException undefined
where
interval = diffDays end start
startDay = dayOfWeek start
wds' = L.sort $ (\x -> diff (fromWeekday x) startDay) <$> L.nub wds
diff a b = fromIntegral $ mod (fromEnum a - fromEnum b) 7
allocatePre
:: Natural
-> Rational
-> [FlatAllocation PretaxValue]
-> (M.Map T.Text Rational, [FlatAllocation Rational])
allocatePre precision gross = L.mapAccumR go M.empty
where
go m f@FlatAllocation {faValue} =
let c = preCategory faValue
p = preValue faValue
v =
if prePercent faValue
then (roundPrecision 3 p / 100) * gross
else roundPrecision precision p
in (mapAdd_ c v m, f {faValue = v})
allo2Trans
:: BudgetMeta
-> Day
-> TaggedAcnt
-> FlatAllocation Rational
-> UnbalancedTransfer
allo2Trans meta day from FlatAllocation {faValue, faTo, faDesc, faCur} =
FlatTransfer
{ cbtMeta = meta
, cbtWhen = day
, cbtFrom = from
, cbtCur = faCur
, cbtTo = faTo
, cbtValue = UnbalancedValue BTFixed faValue
, cbtDesc = faDesc
}
allocateTax
:: Natural
-> Rational
-> M.Map T.Text Rational
-> PeriodScaler
-> [FlatAllocation TaxValue]
-> [FlatAllocation Rational]
allocateTax precision gross preDeds f = fmap (fmap go)
where
go TaxValue {tvCategories, tvMethod} =
let agi = gross - sum (mapMaybe (`M.lookup` preDeds) tvCategories)
in case tvMethod of
TMPercent p ->
roundPrecision precision $
fromRational $
roundPrecision 3 p / 100 * agi
TMBracket TaxProgression {tpDeductible, tpBrackets} ->
let taxDed = roundPrecision precision $ f precision tpDeductible
in foldBracket f precision (agi - taxDed) tpBrackets
allocatePost
:: Natural
-> Rational
-> [FlatAllocation PosttaxValue]
-> [FlatAllocation Rational]
allocatePost precision aftertax = fmap (fmap go)
where
go PosttaxValue {postValue, postPercent} =
let v = postValue
in if postPercent
then aftertax * roundPrecision 3 v / 100
else roundPrecision precision v
-- | Compute effective tax percentage of a bracket
-- The algorithm can be thought of in three phases:
-- 1. Find the highest tax bracket by looping backward until the AGI is less
-- than the bracket limit
-- 2. Computing the tax in the top bracket by subtracting the AGI from the
-- bracket limit and multiplying by the tax percentage.
-- 3. Adding all lower brackets, which are just the limit of the bracket less
-- the amount of the lower bracket times the percentage.
--
-- In reality, this can all be done with one loop, but it isn't clear these
-- three steps are implemented from this alone.
foldBracket :: PeriodScaler -> Natural -> Rational -> [TaxBracket] -> Rational
foldBracket f precision agi bs = fst $ foldr go (0, agi) $ L.sortOn tbLowerLimit bs
where
go TaxBracket {tbLowerLimit, tbPercent} a@(acc, remain) =
let l = roundPrecision precision $ f precision tbLowerLimit
p = roundPrecision 3 tbPercent / 100
in if remain >= l then (acc + p * (remain - l), l) else a
data FlatAllocation v = FlatAllocation
{ faValue :: !v
, faDesc :: !T.Text
, faTo :: !TaggedAcnt
, faCur :: !BudgetCurrency
}
deriving (Functor, Show)
flattenAllo :: SingleAllocation v -> [FlatAllocation v]
flattenAllo Allocation {alloAmts, alloCur, alloTo} = fmap go alloAmts
where
go Amount {amtValue, amtDesc} =
FlatAllocation
{ faCur = NoX alloCur
, faTo = alloTo
, faValue = amtValue
, faDesc = amtDesc
}
-- ASSUME allocations are sorted
selectAllos :: Day -> BoundAllocation v -> [FlatAllocation v]
selectAllos day Allocation {alloAmts, alloCur, alloTo} =
go <$> filter ((`inBounds` day) . amtWhen) alloAmts
where
go Amount {amtValue, amtDesc} =
FlatAllocation
{ faCur = NoX alloCur
, faTo = alloTo
, faValue = amtValue
, faDesc = amtDesc
}
expandTransfers
:: (MonadInsertError m, MonadSqlQuery m, MonadFinance m)
=> CommitRId
-> T.Text
-> [BudgetTransfer]
-> m [UnbalancedTransfer]
expandTransfers key name ts =
fmap (L.sortOn cbtWhen . concat) $
combineErrors $
fmap (expandTransfer key name) ts
initialCurrency :: BudgetCurrency -> CurID
initialCurrency (NoX c) = c
initialCurrency (X Exchange {xFromCur = c}) = c
expandTransfer
:: (MonadInsertError m, MonadSqlQuery m, MonadFinance m)
=> CommitRId
-> T.Text
-> BudgetTransfer
-> m [UnbalancedTransfer]
expandTransfer key name Transfer {transAmounts, transTo, transCurrency, transFrom} = do
precision <- lookupCurrencyPrec $ initialCurrency transCurrency
fmap concat $ combineErrors $ fmap (go precision) transAmounts
where
go
precision
Amount
{ amtWhen = pat
, amtValue = BudgetTransferValue {btVal = v, btType = y}
, amtDesc = desc
} =
withDates pat $ \day -> do
let meta = BudgetMeta {bmCommit = key, bmName = name}
return
FlatTransfer
{ cbtMeta = meta
, cbtWhen = day
, cbtCur = transCurrency
, cbtFrom = transFrom
, cbtTo = transTo
, cbtValue = UnbalancedValue y $ roundPrecision precision v
, cbtDesc = desc
}
insertBudgetTx :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => BalancedTransfer -> m ()
insertBudgetTx FlatTransfer {cbtFrom, cbtTo, cbtMeta, cbtCur, cbtValue, cbtDesc, cbtWhen} = do
((sFrom, sTo), exchange) <- splitPair cbtFrom cbtTo cbtCur cbtValue
insertPair sFrom sTo
forM_ exchange $ uncurry insertPair
where
insertPair from to = do
k <- insert $ TransactionR (bmCommit cbtMeta) cbtWhen cbtDesc
insertBudgetLabel k from
insertBudgetLabel k to
insertBudgetLabel k split = do
sk <- insertSplit k split
insert_ $ BudgetLabelR sk $ bmName cbtMeta
type SplitPair = (KeySplit, KeySplit)
splitPair
:: (MonadInsertError m, MonadFinance m)
=> TaggedAcnt
-> TaggedAcnt
-> BudgetCurrency
-> Rational
-> m (SplitPair, Maybe SplitPair)
splitPair from to cur val = case cur of
NoX curid -> (,Nothing) <$> pair curid from to val
X Exchange {xFromCur, xToCur, xAcnt, xRate} -> do
let middle = TaggedAcnt xAcnt []
let res1 = pair xFromCur from middle val
let res2 = pair xToCur middle to (val * roundPrecision 3 xRate)
combineError res1 res2 $ \a b -> (a, Just b)
where
pair curid from_ to_ v = do
let s1 = split curid from_ (-v)
let s2 = split curid to_ v
combineError s1 s2 (,)
split c TaggedAcnt {taAcnt, taTags} v =
resolveSplit $
Entry
{ eAcnt = taAcnt
, eValue = v
, eComment = ""
, eCurrency = c
, eTags = taTags
}
checkAcntType
:: (MonadInsertError m, MonadFinance m)
=> AcntType
-> AcntID
-> m AcntID
checkAcntType t = checkAcntTypes (t :| [])
checkAcntTypes
:: (MonadInsertError m, MonadFinance m)
=> NE.NonEmpty AcntType
-> AcntID
-> m AcntID
checkAcntTypes ts i = go =<< lookupAccountType i
where
go t
| t `L.elem` ts = return i
| otherwise = throwError $ InsertException [AccountError i ts]
--------------------------------------------------------------------------------
-- statements
splitHistory :: [History] -> ([HistTransfer], [Statement])
splitHistory = partitionEithers . fmap go
where
go (HistTransfer x) = Left x
go (HistStatement x) = Right x
-- insertStatement
-- :: (MonadUnliftIO m, MonadSqlQuery m, MonadFinance m)
-- => History
-- -> m ()
-- insertStatement (HistTransfer m) = liftIOExceptT $ insertManual m
-- insertStatement (HistStatement i) = insertImport i
insertHistTransfer
:: (MonadInsertError m, MonadSqlQuery m, MonadFinance m)
=> HistTransfer
-> m ()
insertHistTransfer
m@Transfer
{ transFrom = from
, transTo = to
, transCurrency = u
, transAmounts = amts
} = do
whenHash CTManual m () $ \c -> do
bounds <- askDBState kmStatementInterval
let precRes = lookupCurrencyPrec u
let go Amount {amtWhen, amtValue, amtDesc} = do
let dayRes = liftExcept $ expandDatePat bounds amtWhen
(days, precision) <- combineError dayRes precRes (,)
let tx day = txPair day from to u (roundPrecision precision amtValue) amtDesc
keys <- combineErrors $ fmap tx days
mapM_ (insertTx c) keys
void $ combineErrors $ fmap go amts
readHistStmt :: (MonadUnliftIO m, MonadFinance m) => Statement -> m (Maybe (CommitR, [KeyTx]))
readHistStmt i = whenHash_ CTImport i $ do
bs <- readImport i
bounds <- expandBounds <$> askDBState kmStatementInterval
liftIOExceptT $ mapErrors resolveTx $ filter (inBounds bounds . txDate) bs
insertHistStmt :: (MonadSqlQuery m) => CommitR -> [KeyTx] -> m ()
insertHistStmt c ks = do
ck <- insert c
mapM_ (insertTx ck) ks
-- insertImport
-- :: (MonadUnliftIO m, MonadSqlQuery m, MonadFinance m)
-- => Statement
-- -> m ()
-- insertImport i = whenHash CTImport i () $ \c -> do
-- -- TODO this isn't efficient, the whole file will be read and maybe no
-- -- transactions will be desired
-- bs <- readImport i
-- bounds <- expandBounds <$> askDBState kmStatementInterval
-- keys <- liftIOExceptT $ mapErrors resolveTx $ filter (inBounds bounds . txDate) bs
-- mapM_ (insertTx c) keys
--------------------------------------------------------------------------------
-- low-level transaction stuff
-- TODO tags here?
txPair
:: (MonadInsertError m, MonadFinance m)
=> Day
-> AcntID
-> AcntID
-> CurID
-> Rational
-> T.Text
-> m KeyTx
txPair day from to cur val desc = resolveTx tx
where
split a v =
Entry
{ eAcnt = a
, eValue = v
, eComment = ""
, eCurrency = cur
, eTags = []
}
tx =
Tx
{ txDescr = desc
, txDate = day
, txSplits = [split from (-val), split to val]
}
resolveTx :: (MonadInsertError m, MonadFinance m) => BalTx -> m KeyTx
resolveTx t@Tx {txSplits = ss} =
fmap (\kss -> t {txSplits = kss}) $
combineErrors $
fmap resolveSplit ss
resolveSplit :: (MonadInsertError m, MonadFinance m) => BalSplit -> m KeySplit
resolveSplit s@Entry {eAcnt, eCurrency, eValue, eTags} = do
let aRes = lookupAccountKey eAcnt
let cRes = lookupCurrencyKey eCurrency
let sRes = lookupAccountSign eAcnt
let tagRes = combineErrors $ fmap lookupTag eTags
-- TODO correct sign here?
-- TODO lenses would be nice here
combineError (combineError3 aRes cRes sRes (,,)) tagRes $
\(aid, cid, sign) tags ->
s
{ eAcnt = aid
, eCurrency = cid
, eValue = eValue * fromIntegral (sign2Int sign)
, eTags = tags
}
insertTx :: MonadSqlQuery m => CommitRId -> KeyTx -> m ()
insertTx c Tx {txDate = d, txDescr = e, txSplits = ss} = do
k <- insert $ TransactionR c d e
mapM_ (insertSplit k) ss
insertSplit :: MonadSqlQuery m => TransactionRId -> KeySplit -> m SplitRId
insertSplit t Entry {eAcnt, eCurrency, eValue, eComment, eTags} = do
k <- insert $ SplitR t eCurrency eAcnt eComment eValue
mapM_ (insert_ . TagRelationR k) eTags
return k
lookupAccount :: (MonadInsertError m, MonadFinance m) => AcntID -> m (AccountRId, AcntSign, AcntType)
lookupAccount = lookupFinance AcntField kmAccount
lookupAccountKey :: (MonadInsertError m, MonadFinance m) => AcntID -> m AccountRId
lookupAccountKey = fmap fstOf3 . lookupAccount
lookupAccountSign :: (MonadInsertError m, MonadFinance m) => AcntID -> m AcntSign
lookupAccountSign = fmap sndOf3 . lookupAccount
lookupAccountType :: (MonadInsertError m, MonadFinance m) => AcntID -> m AcntType
lookupAccountType = fmap thdOf3 . lookupAccount
lookupCurrency :: (MonadInsertError m, MonadFinance m) => T.Text -> m (CurrencyRId, Natural)
lookupCurrency = lookupFinance CurField kmCurrency
lookupCurrencyKey :: (MonadInsertError m, MonadFinance m) => AcntID -> m CurrencyRId
lookupCurrencyKey = fmap fst . lookupCurrency
lookupCurrencyPrec :: (MonadInsertError m, MonadFinance m) => AcntID -> m Natural
lookupCurrencyPrec = fmap snd . lookupCurrency
lookupTag :: (MonadInsertError m, MonadFinance m) => TagID -> m TagRId
lookupTag = lookupFinance TagField kmTag
lookupFinance
:: (MonadInsertError m, MonadFinance m)
=> SplitIDType
-> (DBState -> M.Map T.Text a)
-> T.Text
-> m a
lookupFinance t f c = (liftExcept . lookupErr (DBKey t) c) =<< askDBState f
-- TODO this hashes twice (not that it really matters)
whenHash
:: (Hashable a, MonadFinance m, MonadSqlQuery m)
=> ConfigType
-> a
-> b
-> (CommitRId -> m b)
-> m b
whenHash t o def f = do
let h = hash o
hs <- askDBState kmNewCommits
if h `elem` hs then f =<< insert (CommitR h t) else return def
whenHash_
:: (Hashable a, MonadFinance m)
=> ConfigType
-> a
-> m b
-> m (Maybe (CommitR, b))
whenHash_ t o f = do
let h = hash o
let c = CommitR h t
hs <- askDBState kmNewCommits
if h `elem` hs then Just . (c,) <$> f else return Nothing

241
lib/Internal/Statement.hs Normal file
View File

@ -0,0 +1,241 @@
{-# LANGUAGE RecordWildCards #-}
module Internal.Statement
( readImport
)
where
import Control.Monad.Error.Class
import Control.Monad.Except
import Data.Csv
import Internal.Types
import Internal.Utils
import RIO
import qualified RIO.ByteString.Lazy as BL
import RIO.FilePath
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.Text as T
import RIO.Time
import qualified RIO.Vector as V
-- TODO this probably won't scale well (pipes?)
readImport :: (MonadUnliftIO m, MonadFinance m) => Statement -> m [BalTx]
readImport Statement {..} = do
let ores = compileOptions stmtTxOpts
let cres = combineErrors $ compileMatch <$> stmtParsers
(compiledOptions, compiledMatches) <- liftIOExcept $ combineError ores cres (,)
let readStmt = readImport_ stmtSkipLines stmtDelim compiledOptions
records <- L.sort . concat <$> mapErrorsIO readStmt stmtPaths
m <- askDBState kmCurrency
fromEither $
flip runReader m $
runExceptT $
matchRecords compiledMatches records
readImport_
:: (MonadUnliftIO m, MonadFinance m)
=> Natural
-> Word
-> TxOptsRe
-> FilePath
-> m [TxRecord]
readImport_ n delim tns p = do
dir <- askDBState kmConfigDir
res <- tryIO $ BL.readFile $ dir </> p
bs <- fromEither $ first (InsertException . (: []) . InsertIOError . showT) res
case decodeByNameWithP (parseTxRecord p tns) opts $ skip bs of
Left m -> throwIO $ InsertException [ParseError $ T.pack m]
Right (_, v) -> return $ catMaybes $ V.toList v
where
opts = defaultDecodeOptions {decDelimiter = fromIntegral delim}
skip = BL.intercalate "\n" . L.drop (fromIntegral n) . BL.split 10
-- TODO handle this better, this maybe thing is a hack to skip lines with
-- blank dates but will likely want to make this more flexible
parseTxRecord :: FilePath -> TxOptsRe -> NamedRecord -> Parser (Maybe TxRecord)
parseTxRecord p TxOpts {..} r = do
d <- r .: T.encodeUtf8 toDate
if d == ""
then return Nothing
else do
a <- parseRational toAmountFmt =<< r .: T.encodeUtf8 toAmount
e <- r .: T.encodeUtf8 toDesc
os <- M.fromList <$> mapM (\n -> (n,) <$> r .: T.encodeUtf8 n) toOther
d' <- parseTimeM True defaultTimeLocale (T.unpack toDateFmt) d
return $ Just $ TxRecord d' a e os p
matchRecords :: [MatchRe] -> [TxRecord] -> InsertExceptT CurrencyM [BalTx]
matchRecords ms rs = do
(matched, unmatched, notfound) <- matchAll (matchPriorities ms) rs
case (matched, unmatched, notfound) of
-- TODO record number of times each match hits for debugging
(ms_, [], []) -> liftInner $ combineErrors $ fmap balanceTx ms_
(_, us, ns) -> throwError $ InsertException [StatementError us ns]
matchPriorities :: [MatchRe] -> [MatchGroup]
matchPriorities =
fmap matchToGroup
. L.groupBy (\a b -> spPriority a == spPriority b)
. L.sortOn (Down . spPriority)
matchToGroup :: [MatchRe] -> MatchGroup
matchToGroup ms =
uncurry MatchGroup $
first (L.sortOn spDate) $
L.partition (isJust . spDate) ms
-- TDOO could use a better struct to flatten the maybe date subtype
data MatchGroup = MatchGroup
{ mgDate :: ![MatchRe]
, mgNoDate :: ![MatchRe]
}
deriving (Show)
data Zipped a = Zipped ![a] ![a]
data Unzipped a = Unzipped ![a] ![a] ![a]
initZipper :: [a] -> Zipped a
initZipper = Zipped []
resetZipper :: Zipped a -> Zipped a
resetZipper = initZipper . recoverZipper
recoverZipper :: Zipped a -> [a]
recoverZipper (Zipped as bs) = reverse as ++ bs
zipperSlice
:: (a -> b -> Ordering)
-> b
-> Zipped a
-> Either (Zipped a) (Unzipped a)
zipperSlice f x = go
where
go z@(Zipped _ []) = Left z
go z@(Zipped bs (a : as)) =
case f a x of
GT -> go $ Zipped (a : bs) as
EQ -> Right $ goEq (Unzipped bs [a] as)
LT -> Left z
goEq z@(Unzipped _ _ []) = z
goEq z@(Unzipped bs cs (a : as)) =
case f a x of
GT -> goEq $ Unzipped (a : bs) cs as
EQ -> goEq $ Unzipped bs (a : cs) as
LT -> z
zipperMatch
:: Unzipped MatchRe
-> TxRecord
-> InsertExceptT CurrencyM (Zipped MatchRe, MatchRes RawTx)
zipperMatch (Unzipped bs cs as) x = go [] cs
where
go _ [] = return (Zipped bs $ cs ++ as, MatchFail)
go prev (m : ms) = do
res <- matches m x
case res of
MatchFail -> go (m : prev) ms
skipOrPass ->
let ps = reverse prev
ms' = maybe ms (: ms) (matchDec m)
in return (Zipped bs $ ps ++ ms' ++ as, skipOrPass)
-- TODO all this unpacking left/error crap is annoying
zipperMatch'
:: Zipped MatchRe
-> TxRecord
-> InsertExceptT CurrencyM (Zipped MatchRe, MatchRes RawTx)
zipperMatch' z x = go z
where
go (Zipped bs (a : as)) = do
res <- matches a x
case res of
MatchFail -> go (Zipped (a : bs) as)
skipOrPass ->
return (Zipped (maybe bs (: bs) $ matchDec a) as, skipOrPass)
go z' = return (z', MatchFail)
matchDec :: MatchRe -> Maybe MatchRe
matchDec m = case spTimes m of
Just 1 -> Nothing
Just n -> Just $ m {spTimes = Just $ n - 1}
Nothing -> Just m
matchAll :: [MatchGroup] -> [TxRecord] -> InsertExceptT CurrencyM ([RawTx], [TxRecord], [MatchRe])
matchAll = go ([], [])
where
go (matched, unused) gs rs = case (gs, rs) of
(_, []) -> return (matched, [], unused)
([], _) -> return (matched, rs, unused)
(g : gs', _) -> do
(ts, unmatched, us) <- matchGroup g rs
go (ts ++ matched, us ++ unused) gs' unmatched
matchGroup :: MatchGroup -> [TxRecord] -> InsertExceptT CurrencyM ([RawTx], [TxRecord], [MatchRe])
matchGroup MatchGroup {mgDate = ds, mgNoDate = ns} rs = do
(md, rest, ud) <- matchDates ds rs
(mn, unmatched, un) <- matchNonDates ns rest
return (md ++ mn, unmatched, filter ((/= Nothing) . spTimes) $ ud ++ un)
matchDates :: [MatchRe] -> [TxRecord] -> InsertExceptT CurrencyM ([RawTx], [TxRecord], [MatchRe])
matchDates ms = go ([], [], initZipper ms)
where
go (matched, unmatched, z) [] =
return
( catMaybes matched
, reverse unmatched
, recoverZipper z
)
go (matched, unmatched, z) (r : rs) =
case zipperSlice findDate r z of
Left zipped -> go (matched, r : unmatched, zipped) rs
Right unzipped -> do
(z', res) <- zipperMatch unzipped r
let (m, u) = case res of
(MatchPass p) -> (Just p : matched, unmatched)
MatchSkip -> (Nothing : matched, unmatched)
MatchFail -> (matched, r : unmatched)
go (m, u, z') rs
findDate m r = maybe EQ (`compareDate` trDate r) $ spDate m
matchNonDates :: [MatchRe] -> [TxRecord] -> InsertExceptT CurrencyM ([RawTx], [TxRecord], [MatchRe])
matchNonDates ms = go ([], [], initZipper ms)
where
go (matched, unmatched, z) [] =
return
( catMaybes matched
, reverse unmatched
, recoverZipper z
)
go (matched, unmatched, z) (r : rs) = do
(z', res) <- zipperMatch' z r
let (m, u) = case res of
MatchPass p -> (Just p : matched, unmatched)
MatchSkip -> (Nothing : matched, unmatched)
MatchFail -> (matched, r : unmatched)
in go (m, u, resetZipper z') rs
balanceTx :: RawTx -> InsertExcept BalTx
balanceTx t@Tx {txSplits = ss} = do
bs <- balanceSplits ss
return $ t {txSplits = bs}
balanceSplits :: [RawSplit] -> InsertExcept [BalSplit]
balanceSplits ss =
fmap concat
<$> mapM (uncurry bal)
$ groupByKey
$ fmap (\s -> (eCurrency s, s)) ss
where
haeValue s@Entry {eValue = Just v} = Right s {eValue = v}
haeValue s = Left s
bal cur rss
| length rss < 2 = throwError $ InsertException [BalanceError TooFewSplits cur rss]
| otherwise = case partitionEithers $ fmap haeValue rss of
([noVal], val) -> return $ noVal {eValue = foldr (\s x -> x - eValue s) 0 val} : val
([], val) -> return val
_ -> throwError $ InsertException [BalanceError NotOneBlank cur rss]
groupByKey :: Ord k => [(k, v)] -> [(k, [v])]
groupByKey = M.toList . M.fromListWith (++) . fmap (second (: []))

View File

@ -1,5 +1,4 @@
-- | Helper functions so I don't need to write lots of dhall instances
module Internal.Types.TH where
module Internal.TH where
import Language.Haskell.TH.Syntax (Dec (..), Q (..), Type (..), mkName)
import RIO

View File

@ -4,24 +4,29 @@
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
-- | Types corresponding to the configuration tree (written in Dhall)
module Internal.Types.Dhall where
module Internal.Types where
import Control.Monad.Except
import Data.Fix (Fix (..), foldFix)
import Data.Functor.Foldable (embed)
import qualified Data.Functor.Foldable.TH as TH
import Database.Persist.Sql hiding (Desc, In, Statement)
import Database.Persist.TH
import Dhall hiding (embed, maybe)
import Dhall.TH
import Internal.Types.TH (deriveProduct)
import Internal.TH (deriveProduct)
import Language.Haskell.TH.Syntax (Lift)
import RIO
import qualified RIO.Map as M
import qualified RIO.NonEmpty as NE
import qualified RIO.Text as T
import RIO.Time
import Text.Regex.TDFA
-- TODO find a way to conventiently make TaggedAcnt use my newtypes
-------------------------------------------------------------------------------
-- DHALL CONFIG
-------------------------------------------------------------------------------
makeHaskellTypesWith
(defaultGenerateOptions {generateToDhallInstance = False, generateFromDhallInstance = False})
[ MultipleConstructors "SqlConfig" "(./dhall/Types.dhall).SqlConfig"
@ -33,14 +38,13 @@ makeHaskellTypesWith
, MultipleConstructors "YMDMatcher" "(./dhall/Types.dhall).YMDMatcher"
, MultipleConstructors "DateMatcher" "(./dhall/Types.dhall).DateMatcher"
, MultipleConstructors "EntryNumGetter" "(./dhall/Types.dhall).EntryNumGetter"
, MultipleConstructors "LinkedEntryNumGetter" "(./dhall/Types.dhall).LinkedEntryNumGetter"
, MultipleConstructors "TransferType" "(./dhall/Types.dhall).TransferType"
, MultipleConstructors "BudgetCurrency" "(./dhall/Types.dhall).BudgetCurrency"
, MultipleConstructors "BudgetTransferType" "(./dhall/Types.dhall).BudgetTransferType"
, MultipleConstructors "TaxMethod" "(./dhall/Types.dhall).TaxMethod"
, MultipleConstructors "PeriodType" "(./dhall/Types.dhall).PeriodType"
, SingleConstructor "LinkedNumGetter" "LinkedNumGetter" "(./dhall/Types.dhall).LinkedNumGetter.Type"
, SingleConstructor "Currency" "Currency" "(./dhall/Types.dhall).Currency"
, SingleConstructor "Tag" "Tag" "(./dhall/Types.dhall).Tag"
, SingleConstructor "TaggedAcnt" "TaggedAcnt" "(./dhall/Types.dhall).TaggedAcnt.Type"
, SingleConstructor "TaggedAcnt" "TaggedAcnt" "(./dhall/Types.dhall).TaggedAcnt"
, SingleConstructor "Gregorian" "Gregorian" "(./dhall/Types.dhall).Gregorian"
, SingleConstructor "GregorianM" "GregorianM" "(./dhall/Types.dhall).GregorianM"
, SingleConstructor "Interval" "Interval" "(./dhall/Types.dhall).Interval"
@ -49,16 +53,12 @@ makeHaskellTypesWith
, SingleConstructor "ModPat" "ModPat" "(./dhall/Types.dhall).ModPat.Type"
, SingleConstructor "CronPat" "CronPat" "(./dhall/Types.dhall).CronPat.Type"
, SingleConstructor "ValMatcher" "ValMatcher" "(./dhall/Types.dhall).ValMatcher.Type"
, SingleConstructor "TxAmount1" "TxAmount1" "(./dhall/Types.dhall).TxAmount1_"
, SingleConstructor "TxAmount2" "TxAmount2" "(./dhall/Types.dhall).TxAmount2_"
, SingleConstructor
"Amount"
"Amount"
"\\(w : Type) -> \\(v : Type) -> ((./dhall/Types.dhall).Amount w v).Type"
, SingleConstructor
"AcntMatcher_"
"AcntMatcher_"
"\\(re : Type) -> ((./dhall/Types.dhall).AcntMatcher_ re).Type"
, SingleConstructor "Amount" "Amount" "(./dhall/Types.dhall).Amount"
, SingleConstructor "AcntSet" "AcntSet" "(./dhall/Types.dhall).AcntSet.Type"
, SingleConstructor "TransferMatcher" "TransferMatcher" "(./dhall/Types.dhall).TransferMatcher.Type"
, SingleConstructor "ShadowTransfer" "ShadowTransfer" "(./dhall/Types.dhall).ShadowTransfer"
, -- , SingleConstructor "Income" "Income" "(./dhall/Types.dhall).Income.Type"
SingleConstructor "Exchange" "Exchange" "(./dhall/Types.dhall).Exchange"
, SingleConstructor "Field" "Field" "(./dhall/Types.dhall).Field"
, SingleConstructor "Entry" "Entry" "(./dhall/Types.dhall).Entry"
, SingleConstructor "PretaxValue" "PretaxValue" "(./dhall/Types.dhall).PretaxValue"
@ -66,9 +66,14 @@ makeHaskellTypesWith
, SingleConstructor "TaxProgression" "TaxProgression" "(./dhall/Types.dhall).TaxProgression"
, SingleConstructor "TaxValue" "TaxValue" "(./dhall/Types.dhall).TaxValue"
, SingleConstructor "PosttaxValue" "PosttaxValue" "(./dhall/Types.dhall).PosttaxValue"
, SingleConstructor "TransferValue" "TransferValue" "(./dhall/Types.dhall).TransferValue.Type"
, SingleConstructor "BudgetTransferValue" "BudgetTransferValue" "(./dhall/Types.dhall).BudgetTransferValue"
, SingleConstructor "Period" "Period" "(./dhall/Types.dhall).Period"
, SingleConstructor "HourlyPeriod" "HourlyPeriod" "(./dhall/Types.dhall).HourlyPeriod"
-- , SingleConstructor "ToTx" "ToTx" "(./dhall/Types.dhall).ToTx"
-- , SingleConstructor "FieldMatcher" "FieldMatcher" "(./dhall/Types.dhall).FieldMatcher_"
-- , SingleConstructor "Match" "Match" "(./dhall/Types.dhall).Match_"
-- , SingleConstructor "Budget" "Budget" "(./dhall/Types.dhall).Budget"
-- SingleConstructor "Transfer" "Transfer" "(./dhall/Types.dhall).Transfer"
]
deriveProduct
@ -87,13 +92,17 @@ deriveProduct
, "CronPat"
, "DatePat"
, "TaggedAcnt"
, "Budget"
, "Income"
, "ShadowTransfer"
, "TransferMatcher"
, "AcntSet"
, "DateMatcher"
, "ValMatcher"
, "YMDMatcher"
, "BudgetCurrency"
, "Exchange"
, "EntryNumGetter"
, "LinkedNumGetter"
, "LinkedEntryNumGetter"
, "TemporalScope"
, "SqlConfig"
, "PretaxValue"
@ -102,8 +111,8 @@ deriveProduct
, "TaxProgression"
, "TaxMethod"
, "PosttaxValue"
, "TransferValue"
, "TransferType"
, "BudgetTransferValue"
, "BudgetTransferType"
, "Period"
, "PeriodType"
, "HourlyPeriod"
@ -174,44 +183,23 @@ deriving instance Ord DatePat
deriving instance Hashable DatePat
type PairedTransfer = Transfer TaggedAcnt CurID DatePat TransferValue
type BudgetTransfer =
Transfer TaggedAcnt BudgetCurrency DatePat BudgetTransferValue
deriving instance Hashable PairedTransfer
deriving instance Hashable BudgetTransfer
deriving instance Generic PairedTransfer
deriving instance Generic BudgetTransfer
deriving instance FromDhall PairedTransfer
newtype BudgetName = BudgetName {unBudgetName :: T.Text}
deriving newtype (Show, Eq, Ord, Hashable, FromDhall, PersistField, PersistFieldSql)
deriving instance FromDhall BudgetTransfer
data Budget = Budget
{ bgtLabel :: !BudgetName
, bgtIncomes :: ![Income]
, bgtPretax :: ![MultiAllocation PretaxValue]
, bgtTax :: ![MultiAllocation TaxValue]
, bgtPosttax :: ![MultiAllocation PosttaxValue]
, bgtTransfers :: ![PairedTransfer]
, bgtShadowTransfers :: ![ShadowTransfer]
, bgtInterval :: !(Maybe Interval)
}
deriving (Generic, Hashable, FromDhall)
data ShadowTransfer = ShadowTransfer
{ stFrom :: !TaggedAcnt
, stTo :: !TaggedAcnt
, stCurrency :: !CurID
, stDesc :: !Text
, stMatch :: !(TransferMatcher_ Text)
, stRatio :: !Double
}
deriving (Generic, Hashable, FromDhall)
data TransferMatcher_ re = TransferMatcher_
{ tmFrom :: !(Maybe (AcntMatcher_ re))
, tmTo :: !(Maybe (AcntMatcher_ re))
, tmDate :: !(Maybe DateMatcher)
, tmVal :: !ValMatcher
{ bgtLabel :: Text
, bgtIncomes :: [Income]
, bgtPretax :: [MultiAllocation PretaxValue]
, bgtTax :: [MultiAllocation TaxValue]
, bgtPosttax :: [MultiAllocation PosttaxValue]
, bgtTransfers :: [BudgetTransfer]
, bgtShadowTransfers :: [ShadowTransfer]
}
deriving instance Hashable PretaxValue
@ -226,28 +214,17 @@ deriving instance Hashable TaxValue
deriving instance Hashable PosttaxValue
deriving instance Hashable TransferValue
deriving instance Hashable Budget
deriving instance Hashable TransferType
deriving instance Hashable BudgetTransferValue
deriving instance Read TransferType
instance PersistFieldSql TransferType where
sqlType _ = SqlString
instance PersistField TransferType where
toPersistValue = PersistText . T.pack . show
fromPersistValue (PersistText v) =
maybe (Left $ "could not parse: " <> v) Right $ readMaybe $ T.unpack v
fromPersistValue _ = Left "wrong type"
deriving instance Hashable BudgetTransferType
deriving instance Hashable TaggedAcnt
deriving instance Ord TaggedAcnt
newtype CurID = CurID {unCurID :: T.Text}
deriving newtype (Eq, Show, Ord, Hashable, FromDhall, PersistField, PersistFieldSql)
type CurID = T.Text
data Income = Income
{ incGross :: Double
@ -259,7 +236,6 @@ data Income = Income
, incFrom :: TaggedAcnt
, incToBal :: TaggedAcnt
, incPayPeriod :: !Period
, incPriority :: !Int
}
deriving instance Hashable HourlyPeriod
@ -278,13 +254,20 @@ deriving instance (FromDhall v, FromDhall w) => FromDhall (Amount w v)
deriving instance (Hashable v, Hashable w) => Hashable (Amount w v)
-- deriving instance (Generic w, Generic v, FromDhall w, FromDhall v) => FromDhall (Amount w v)
deriving instance (Show w, Show v) => Show (Amount w v)
deriving instance (Eq w, Eq v) => Eq (Amount w v)
deriving instance Hashable Exchange
deriving instance Hashable BudgetCurrency
data Allocation w v = Allocation
{ alloTo :: TaggedAcnt
, alloAmts :: [Amount w v]
, alloCur :: CurID
}
deriving (Eq, Show, Generic, Hashable)
@ -325,17 +308,11 @@ data Transfer a c w v = Transfer
}
deriving (Eq, Show)
deriving instance Generic (TransferMatcher_ Text)
deriving instance Hashable ShadowTransfer
deriving instance Hashable (TransferMatcher_ Text)
deriving instance Hashable AcntSet
deriving instance FromDhall (TransferMatcher_ Text)
deriving instance Generic (AcntMatcher_ Text)
deriving instance Hashable (AcntMatcher_ Text)
deriving instance FromDhall (AcntMatcher_ Text)
deriving instance Hashable TransferMatcher
deriving instance Hashable ValMatcher
@ -367,10 +344,6 @@ instance Ord DateMatcher where
deriving instance Hashable EntryNumGetter
deriving instance Hashable LinkedNumGetter
deriving instance Hashable LinkedEntryNumGetter
-------------------------------------------------------------------------------
-- top level type with fixed account tree to unroll the recursion in the dhall
-- account tree type
@ -393,7 +366,7 @@ data AccountRoot_ a = AccountRoot_
, arIncome :: ![a]
, arLiabilities :: ![a]
}
deriving (Generic, Hashable)
deriving (Generic)
type AccountRootF = AccountRoot_ (Fix AccountTreeF)
@ -402,8 +375,10 @@ deriving instance FromDhall AccountRootF
type AccountRoot = AccountRoot_ AccountTree
data Config_ a = Config_
{ scope :: !TemporalScope
{ global :: !TemporalScope
, budget :: ![Budget]
, currencies :: ![Currency]
, statements :: ![History]
, accounts :: !a
, tags :: ![Tag]
, sqlConfig :: !SqlConfig
@ -433,76 +408,55 @@ instance FromDhall a => FromDhall (Config_ a)
-- dhall type overrides (since dhall can't import types with parameters...yet)
-- TODO newtypes for these?
newtype AcntID = AcntID {unAcntID :: T.Text}
deriving newtype (Eq, Show, Ord, Hashable, FromDhall, PersistField, PersistFieldSql)
type AcntID = T.Text
newtype TagID = TagID {unTagID :: T.Text}
deriving newtype (Eq, Show, Ord, Hashable, FromDhall, PersistField, PersistFieldSql)
type TagID = T.Text
type HistTransfer = Transfer AcntID CurID DatePat Double
deriving instance Generic HistTransfer
deriving instance Hashable HistTransfer
deriving instance FromDhall HistTransfer
data History
= HistTransfer !PairedTransfer
= HistTransfer !HistTransfer
| HistStatement !Statement
deriving (Eq, Generic, Hashable, FromDhall)
type EntryGetter n = Entry EntryAcnt n TagID
type EntryGetter = Entry SplitAcnt (Maybe EntryNumGetter) SplitCur TagID
type FromEntryGetter = EntryGetter EntryNumGetter
instance FromDhall EntryGetter
type ToEntryGetter = EntryGetter LinkedEntryNumGetter
deriving instance (Show a, Show c, Show v, Show t) => Show (Entry a v c t)
instance FromDhall FromEntryGetter
deriving instance Generic (Entry a v c t)
instance FromDhall ToEntryGetter
deriving instance (Hashable a, Hashable v, Hashable c, Hashable t) => Hashable (Entry a v c t)
deriving instance (Show a, Show v, Show t) => Show (Entry a v t)
deriving instance (Eq a, Eq v, Eq c, Eq t) => Eq (Entry a v c t)
deriving instance Generic (Entry a v t)
data Tx s = Tx
{ txDescr :: !T.Text
, txDate :: !Day
, txSplits :: ![s]
}
deriving (Generic)
deriving instance (Hashable a, Hashable v, Hashable t) => Hashable (Entry a v t)
type ExpTx = Tx EntryGetter
deriving instance (Eq a, Eq v, Eq t) => Eq (Entry a v t)
instance FromDhall ExpTx
deriving instance Eq a => Eq (TxOpts a)
deriving instance Generic (TxOpts a)
deriving instance Hashable (TxOpts T.Text)
deriving instance FromDhall (TxOpts T.Text)
deriving instance Show a => Show (TxOpts a)
deriving instance Eq re => Eq (TxAmount1 re)
deriving instance Eq re => Eq (TxAmount2 re)
deriving instance Show re => Show (TxAmount1 re)
deriving instance Show re => Show (TxAmount2 re)
deriving instance Generic (TxAmount1 T.Text)
deriving instance Generic (TxAmount2 T.Text)
deriving instance Hashable (TxAmount1 T.Text)
deriving instance Hashable (TxAmount2 T.Text)
deriving instance FromDhall (TxAmount1 T.Text)
deriving instance FromDhall (TxAmount2 T.Text)
deriving instance Functor TxAmount1
deriving instance Functor TxAmount2
deriving instance Foldable TxAmount1
deriving instance Foldable TxAmount2
deriving instance Traversable TxAmount1
deriving instance Traversable TxAmount2
data TxOpts re = TxOpts
{ toDate :: !T.Text
, toAmount :: !T.Text
, toDesc :: !T.Text
, toOther :: ![T.Text]
, toDateFmt :: !T.Text
, toAmountFmt :: !re
}
deriving (Eq, Generic, Hashable, Show, FromDhall)
data Statement = Statement
{ stmtPaths :: ![FilePath]
@ -511,32 +465,9 @@ data Statement = Statement
, stmtTxOpts :: !(TxOpts T.Text)
, stmtSkipLines :: !Natural
}
deriving (Eq, Hashable, Generic, FromDhall, Show)
deriving (Eq, Hashable, Generic, FromDhall)
data TxAmountSpec re = AmountSingle (TxAmount1 re) | AmountDual (TxAmount2 re)
deriving (Eq, Show, Functor, Foldable, Traversable)
deriving instance Generic (TxAmountSpec T.Text)
deriving instance FromDhall (TxAmountSpec T.Text)
deriving instance Hashable (TxAmountSpec T.Text)
data TxOpts re = TxOpts
{ toDate :: !T.Text
, toAmount :: !(TxAmountSpec re)
, toDesc :: !T.Text
, toOther :: ![T.Text]
, toDateFmt :: !T.Text
, toSkipBlankDate :: !Bool
, toSkipBlankAmount :: !Bool
, toSkipBlankDescription :: !Bool
, toSkipBlankOther :: ![Text]
, toSkipMissingFields :: !Bool
}
deriving (Functor, Foldable, Traversable)
-- | the value of a field in entry (text version)
-- | the value of a field in split (text version)
-- can either be a raw (constant) value, a lookup from the record, or a map
-- between the lookup and some other value
data EntryTextGetter t
@ -544,11 +475,11 @@ data EntryTextGetter t
| LookupT !T.Text
| MapT !(FieldMap T.Text t)
| Map2T !(FieldMap (T.Text, T.Text) t)
deriving (Eq, Generic, Hashable, Show, FromDhall, Functor)
deriving (Eq, Generic, Hashable, Show, FromDhall)
type EntryCur = EntryTextGetter CurID
type SplitCur = EntryTextGetter CurID
type EntryAcnt = EntryTextGetter AcntID
type SplitAcnt = EntryTextGetter AcntID
deriving instance (Show k, Show v) => Show (Field k v)
@ -576,32 +507,10 @@ data FieldMatcher re
deriving instance Show (FieldMatcher T.Text)
data TxHalfGetter e = TxHalfGetter
{ thgAcnt :: !EntryAcnt
, thgComment :: !T.Text
, thgTags :: ![TagID]
, thgEntries :: ![e]
}
deriving (Eq, Generic, Hashable, Show)
deriving instance FromDhall (TxHalfGetter FromEntryGetter)
deriving instance FromDhall (TxHalfGetter ToEntryGetter)
data TxSubGetter = TxSubGetter
{ tsgFrom :: !(TxHalfGetter FromEntryGetter)
, tsgTo :: !(TxHalfGetter ToEntryGetter)
, tsgValue :: !EntryNumGetter
, tsgCurrency :: !EntryCur
}
deriving (Eq, Generic, Hashable, Show, FromDhall)
data TxGetter = TxGetter
{ tgFrom :: !(TxHalfGetter FromEntryGetter)
, tgTo :: !(TxHalfGetter ToEntryGetter)
, tgCurrency :: !EntryCur
, tgOtherEntries :: ![TxSubGetter]
, tgScale :: !Double
{ tgCurrency :: !SplitCur
, tgAcnt :: !SplitAcnt
, tgEntries :: ![EntryGetter]
}
deriving (Eq, Generic, Hashable, Show, FromDhall)
@ -618,5 +527,270 @@ data StatementParser re = StatementParser
deriving instance Show (StatementParser T.Text)
--------------------------------------------------------------------------------
-- DATABASE MODEL
--------------------------------------------------------------------------------
share
[mkPersist sqlSettings, mkMigrate "migrateAll"]
[persistLowerCase|
CommitR sql=commits
hash Int
type ConfigType
deriving Show Eq
CurrencyR sql=currencies
symbol T.Text
fullname T.Text
precision Int
deriving Show Eq
TagR sql=tags
symbol T.Text
fullname T.Text
deriving Show Eq
AccountR sql=accounts
name T.Text
fullpath T.Text
desc T.Text
deriving Show Eq
AccountPathR sql=account_paths
parent AccountRId OnDeleteCascade
child AccountRId OnDeleteCascade
depth Int
deriving Show Eq
TransactionR sql=transactions
commit CommitRId OnDeleteCascade
date Day
description T.Text
deriving Show Eq
SplitR sql=splits
transaction TransactionRId OnDeleteCascade
currency CurrencyRId OnDeleteCascade
account AccountRId OnDeleteCascade
memo T.Text
value Rational
deriving Show Eq
TagRelationR sql=tag_relations
split SplitRId OnDeleteCascade
tag TagRId OnDeleteCascade
BudgetLabelR sql=budget_labels
split SplitRId OnDeleteCascade
budgetName T.Text
deriving Show Eq
|]
--------------------------------------------------------------------------------
-- database cache types
data ConfigHashes = ConfigHashes
{ chIncome :: ![Int]
, chExpense :: ![Int]
, chManual :: ![Int]
, chImport :: ![Int]
}
data ConfigType = CTBudget | CTManual | CTImport
deriving (Eq, Show, Read, Enum)
instance PersistFieldSql ConfigType where
sqlType _ = SqlString
instance PersistField ConfigType where
toPersistValue = PersistText . T.pack . show
-- TODO these error messages *might* be good enough?
fromPersistValue (PersistText v) =
maybe (Left $ "could not parse: " <> v) Right $ readMaybe $ T.unpack v
fromPersistValue _ = Left "wrong type"
type AccountMap = M.Map AcntID (AccountRId, AcntSign, AcntType)
type CurrencyMap = M.Map CurID (CurrencyRId, Natural)
type TagMap = M.Map TagID TagRId
data DBState = DBState
{ kmCurrency :: !CurrencyMap
, kmAccount :: !AccountMap
, kmTag :: !TagMap
, kmBudgetInterval :: !Bounds
, kmStatementInterval :: !Bounds
, kmNewCommits :: ![Int]
, kmOldCommits :: ![Int]
, kmConfigDir :: !FilePath
, kmTagAll :: ![Entity TagR]
, kmAcntPaths :: ![AccountPathR]
, kmAcntsOld :: ![Entity AccountR]
, kmCurrenciesOld :: ![Entity CurrencyR]
}
type CurrencyM = Reader CurrencyMap
type KeySplit = Entry AccountRId Rational CurrencyRId TagRId
type KeyTx = Tx KeySplit
type TreeR = Tree ([T.Text], AccountRId)
type Balances = M.Map AccountRId Rational
type BalanceM = ReaderT (MVar Balances)
type MonadFinance = MonadReader DBState
askDBState :: MonadFinance m => (DBState -> a) -> m a
askDBState = asks
class MonadUnliftIO m => MonadBalance m where
askBalances :: m (MVar Balances)
withBalances :: (Balances -> m a) -> m a
withBalances f = do
bs <- askBalances
withMVar bs f
modifyBalances :: (Balances -> m (Balances, a)) -> m a
modifyBalances f = do
bs <- askBalances
modifyMVar bs f
lookupBalance :: AccountRId -> m Rational
lookupBalance i = withBalances $ return . fromMaybe 0 . M.lookup i
addBalance :: AccountRId -> Rational -> m ()
addBalance i v =
modifyBalances $ return . (,()) . M.alter (Just . maybe v (v +)) i
-------------------------------------------------------------------------------
-- misc
data AcntType
= AssetT
| EquityT
| ExpenseT
| IncomeT
| LiabilityT
deriving (Show, Eq, Ord, Lift, Hashable, Generic, Read, FromDhall)
atName :: AcntType -> T.Text
atName AssetT = "asset"
atName EquityT = "equity"
atName ExpenseT = "expense"
atName IncomeT = "income"
atName LiabilityT = "liability"
data AcntPath = AcntPath
{ apType :: !AcntType
, apChildren :: ![T.Text]
}
deriving (Eq, Ord, Show, Lift, Hashable, Generic, Read, FromDhall)
data TxRecord = TxRecord
{ trDate :: !Day
, trAmount :: !Rational
, trDesc :: !T.Text
, trOther :: !(M.Map T.Text T.Text)
, trFile :: !FilePath
}
deriving (Show, Eq, Ord)
type Bounds = (Day, Natural)
data Keyed a = Keyed
{ kKey :: !Int64
, kVal :: !a
}
deriving (Eq, Show, Functor)
data Tree a = Branch !a ![Tree a] | Leaf !a deriving (Show)
data AcntSign = Credit | Debit
deriving (Show)
sign2Int :: AcntSign -> Int
sign2Int Debit = 1
sign2Int Credit = 1
accountSign :: AcntType -> AcntSign
accountSign AssetT = Debit
accountSign ExpenseT = Debit
accountSign IncomeT = Credit
accountSign LiabilityT = Credit
accountSign EquityT = Credit
type RawSplit = Entry AcntID (Maybe Rational) CurID TagID
type BalSplit = Entry AcntID Rational CurID TagID
type RawTx = Tx RawSplit
type BalTx = Tx BalSplit
data MatchRes a = MatchPass !a | MatchFail | MatchSkip
--------------------------------------------------------------------------------
-- exception types
data BalanceType = TooFewSplits | NotOneBlank deriving (Show)
data MatchType = MatchNumeric | MatchText deriving (Show)
data SplitIDType = AcntField | CurField | TagField deriving (Show)
data LookupSuberr
= SplitIDField !SplitIDType
| SplitValField
| MatchField !MatchType
| DBKey !SplitIDType
deriving (Show)
data AllocationSuberr
= NoAllocations
| ExceededTotal
| MissingBlank
| TooManyBlanks
deriving (Show)
data PatternSuberr = ZeroLength | ZeroRepeats deriving (Show)
data InsertError
= RegexError !T.Text
| MatchValPrecisionError !Natural !Natural
| AccountError !AcntID !(NE.NonEmpty AcntType)
| InsertIOError !T.Text
| ParseError !T.Text
| ConversionError !T.Text
| LookupError !LookupSuberr !T.Text
| BalanceError !BalanceType !CurID ![RawSplit]
| IncomeError !Day !T.Text !Rational
| PatternError !Natural !Natural !(Maybe Natural) !PatternSuberr
| BoundsError !Gregorian !(Maybe Gregorian)
| StatementError ![TxRecord] ![MatchRe]
| PeriodError !Day !Day
deriving (Show)
newtype InsertException = InsertException [InsertError]
deriving (Show, Semigroup) via [InsertError]
instance Exception InsertException
type MonadInsertError = MonadError InsertException
type InsertExceptT = ExceptT InsertException
type InsertExcept = InsertExceptT Identity
data XGregorian = XGregorian
{ xgYear :: !Int
, xgMonth :: !Int
, xgDay :: !Int
, xgDayOfWeek :: !Int
}
type MatchRe = StatementParser (T.Text, Regex)
type TxOptsRe = TxOpts (T.Text, Regex)
type FieldMatcherRe = FieldMatcher (T.Text, Regex)
instance Show (StatementParser (T.Text, Regex)) where
show = show . fmap fst

View File

@ -1,187 +0,0 @@
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
-- | Types corresponding to the database model
module Internal.Types.Database where
import Data.Csv (FromField)
import Database.Persist.Sql hiding (Desc, In, Statement)
import Database.Persist.TH
import Internal.Types.Dhall
import RIO
import qualified RIO.NonEmpty as NE
import qualified RIO.Text as T
import RIO.Time
share
[mkPersist sqlSettings, mkMigrate "migrateAll"]
[persistLowerCase|
CommitR sql=commits
hash CommitHash
type ConfigType
UniqueCommitHash hash
deriving Show Eq Ord
ConfigStateR sql=config_state
historySpan HistorySpan
budgetSpan BudgetSpan
deriving Show
CurrencyR sql=currencies
symbol CurID
fullname T.Text
precision Precision
UniqueCurrencySymbol symbol
UniqueCurrencyFullname fullname
deriving Show Eq Ord
TagR sql=tags
symbol TagID
fullname T.Text
UniqueTagSymbol symbol
UniqueTagFullname fullname
deriving Show Eq Ord
AccountR sql=accounts
name T.Text
fullpath AcntPath
desc T.Text
sign AcntSign
leaf Bool
UniqueAccountFullpath fullpath
deriving Show Eq Ord
AccountPathR sql=account_paths
parent AccountRId
child AccountRId
depth Int
deriving Show Eq Ord
TransactionR sql=transactions
commit CommitRId
date Day
budgetName BudgetName
description TxDesc
priority Int
deriving Show Eq
EntrySetR sql=entry_sets
transaction TransactionRId
currency CurrencyRId
index EntrySetIndex
rebalance Bool
deriving Show Eq
EntryR sql=entries
entryset EntrySetRId
account AccountRId
memo T.Text
value Rational
index EntryIndex
cachedValue (Maybe Rational)
cachedType (Maybe TransferType)
cachedLink (Maybe EntryIndex)
deriving Show Eq
TagRelationR sql=tag_relations
entry EntryRId
tag TagRId
deriving Show Eq
|]
newtype TxIndex = TxIndex {unTxIndex :: Int}
deriving newtype (Show, Eq, Ord, Num, Real, Enum, Integral, PersistField, PersistFieldSql)
newtype EntrySetIndex = EntrySetIndex {unEntrySetIndex :: Int}
deriving newtype (Show, Eq, Ord, Num, Real, Enum, Integral, PersistField, PersistFieldSql)
newtype EntryIndex = EntryIndex {unEntryIndex :: Int}
deriving newtype (Show, Eq, Ord, Num, Real, Enum, Integral, PersistField, PersistFieldSql)
newtype TxDesc = TxDesc {unTxDesc :: T.Text}
deriving newtype (Show, Eq, Ord, PersistField, PersistFieldSql, FromField, IsString)
newtype Precision = Precision {unPrecision :: Word8}
deriving newtype (Eq, Ord, Num, Show, Real, Enum, Integral, PersistField, PersistFieldSql)
type DaySpan = (Day, Int)
newtype CommitHash = CommitHash {unCommitHash :: Int}
deriving newtype (Show, Eq, Num, Ord, PersistField, PersistFieldSql)
newtype BudgetSpan = BudgetSpan {unBSpan :: DaySpan}
deriving newtype (Show, Eq, PersistField, PersistFieldSql)
newtype HistorySpan = HistorySpan {unHSpan :: DaySpan}
deriving newtype (Show, Eq, PersistField, PersistFieldSql)
data ConfigType = CTBudget | CTHistoryTransfer | CTHistoryStatement
deriving (Eq, Show, Read, Enum, Ord)
instance PersistFieldSql ConfigType where
sqlType _ = SqlString
instance PersistField ConfigType where
toPersistValue = PersistText . T.pack . show
fromPersistValue (PersistText v) =
maybe (Left $ "could not parse: " <> v) Right $ readMaybe $ T.unpack v
fromPersistValue _ = Left "not a string"
data AcntSign = Credit | Debit
deriving (Show, Eq, Ord)
instance PersistFieldSql AcntSign where
sqlType _ = SqlInt64
instance PersistField AcntSign where
toPersistValue Debit = PersistInt64 1
toPersistValue Credit = PersistInt64 (-1)
fromPersistValue (PersistInt64 1) = Right Debit
fromPersistValue (PersistInt64 (-1)) = Right Credit
fromPersistValue (PersistInt64 v) = Left $ "could not convert to account sign: " <> tshow v
fromPersistValue _ = Left "not an Int64"
data AcntType
= AssetT
| EquityT
| ExpenseT
| IncomeT
| LiabilityT
deriving (Show, Eq, Ord, Hashable, Generic, Read)
atName :: AcntType -> T.Text
atName AssetT = "asset"
atName EquityT = "equity"
atName ExpenseT = "expense"
atName IncomeT = "income"
atName LiabilityT = "liability"
data AcntPath = AcntPath
{ apType :: !AcntType
, apChildren :: ![T.Text]
}
deriving (Eq, Ord, Show, Hashable, Generic, Read)
acntPath2Text :: AcntPath -> T.Text
acntPath2Text = T.intercalate "/" . NE.toList . acntPath2NonEmpty
acntPath2NonEmpty :: AcntPath -> NonEmpty T.Text
acntPath2NonEmpty (AcntPath t cs) = atName t :| cs
instance PersistFieldSql AcntPath where
sqlType _ = SqlString
instance PersistField AcntPath where
toPersistValue = PersistText . acntPath2Text
fromPersistValue (PersistText v) = case T.split (== '/') v of
[] -> Left "path is empty"
(x : xs) -> case readMaybe $ T.unpack x of
Just t -> Right $ AcntPath t xs
_ -> Left "could not get account type"
fromPersistValue _ = Left "not a string"

View File

@ -1,332 +0,0 @@
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE UndecidableInstances #-}
-- | Other types used throughout the program; kept in its own module to prevent
-- circular imports
module Internal.Types.Main
( module Internal.Types.Main
, module Internal.Types.Dhall
, module Internal.Types.Database
)
where
import Control.Monad.Except
import Data.Decimal
import Database.Persist.Sql hiding (Desc, In, Statement)
import Dhall hiding (embed, maybe)
import Internal.Types.Database
import Internal.Types.Dhall
import RIO
import qualified RIO.Map as M
import qualified RIO.NonEmpty as NE
import qualified RIO.Text as T
import RIO.Time
import Text.Regex.TDFA
--------------------------------------------------------------------------------
-- database cache types
type MonadFinance = MonadReader TxState
data DeleteTxs = DeleteTxs
{ dtCommits :: ![CommitRId]
, dtTxs :: ![TransactionRId]
, dtEntrySets :: ![EntrySetRId]
, dtEntries :: ![EntryRId]
, dtTagRelations :: ![TagRelationRId]
}
deriving (Show)
type EntityCRUDOps r = CRUDOps [Entity r] () () [Key r]
data MetaCRUD = MetaCRUD
{ mcCurrencies :: !(EntityCRUDOps CurrencyR)
, mcAccounts :: !(EntityCRUDOps AccountR)
, mcPaths :: !(EntityCRUDOps AccountPathR)
, mcTags :: !(EntityCRUDOps TagR)
, mcBudgetScope :: !BudgetSpan
, mcHistoryScope :: !HistorySpan
}
type BudgetCRUDOps b = CRUDOps [b] () () DeleteTxs
type PreBudgetCRUD = BudgetCRUDOps Budget
type FinalBudgetCRUD = BudgetCRUDOps (BudgetName, [Tx CommitR])
type HistoryCRUDOps h =
CRUDOps
h
[ReadEntry]
[Either TotalUpdateEntrySet FullUpdateEntrySet]
DeleteTxs
type PreHistoryCRUD = HistoryCRUDOps ([PairedTransfer], [Statement])
type FinalHistoryCRUD = HistoryCRUDOps [Tx CommitR]
data TxState = TxState
{ tsAccountMap :: !AccountMap
, tsCurrencyMap :: !CurrencyMap
, tsTagMap :: !TagMap
, tsBudgetScope :: !BudgetSpan
, tsHistoryScope :: !HistorySpan
}
deriving (Show)
data ExistingConfig = ExistingConfig
{ ecAccounts :: !(Set AccountRId)
, ecTags :: !(Set TagRId)
, ecCurrencies :: !(Set CurrencyRId)
}
type AccountMap = M.Map AcntID (AccountRId, AcntType)
data CurrencyPrec = CurrencyPrec {cpID :: !CurrencyRId, cpPrec :: !Precision}
deriving (Show)
type CurrencyMap = M.Map CurID CurrencyPrec
type TagMap = M.Map TagID TagRId
data CRUDOps c r u d = CRUDOps
{ coCreate :: !c
, coRead :: !r
, coUpdate :: !u
, coDelete :: !d
}
deriving (Show)
data CachedEntry
= CachedLink EntryIndex LinkScale
| CachedBalance Decimal
| CachedPercent Double
data TxSortKey = TxSortKey
{ tskDate :: !Day
, tskPriority :: !Int
, tskDesc :: !TxDesc
}
deriving (Show, Eq, Ord)
-- TODO this should actually be a ReadTx since it will be compared with other
-- Tx's to get the insert/update order correct
data ReadEntry = ReadEntry
{ reCurrency :: !CurrencyRId
, reAcnt :: !AccountRId
, reValue :: !Decimal
, reIndex :: !EntryIndex
, reESIndex :: !EntrySetIndex
, reSortKey :: !TxSortKey
}
deriving (Show)
data UpdateEntry i v = UpdateEntry
{ ueID :: !i
, ueAcnt :: !AccountRId
, ueValue :: !v
, ueIndex :: !EntryIndex
}
deriving (Show)
deriving instance Functor (UpdateEntry i)
newtype LinkScale = LinkScale {unLinkScale :: Double}
deriving newtype (Num, Show, Eq, Ord, Real, Fractional)
newtype StaticValue = StaticValue {unStaticValue :: Decimal}
deriving newtype (Num, Show)
data EntryValueUnk = EVBalance Decimal | EVPercent Double deriving (Show)
type UEUnk = UpdateEntry EntryRId EntryValueUnk
type UELink = UpdateEntry EntryRId LinkScale
type UEBlank = UpdateEntry EntryRId ()
type UE_RO = UpdateEntry () StaticValue
type UEBalanced = UpdateEntry EntryRId StaticValue
data UpdateEntrySet f t = UpdateEntrySet
{ utFrom0 :: !f
, utTo0 :: !UEBlank
, utFromUnk :: ![(UEUnk, [UELink])]
, utToUnk :: ![UEUnk]
, utFromRO :: ![UE_RO]
, utToRO :: ![UE_RO]
, utCurrency :: !CurrencyRId
, utTotalValue :: !t
, utIndex :: !EntrySetIndex
, utSortKey :: !TxSortKey
}
deriving (Show)
type TotalUpdateEntrySet = UpdateEntrySet (UEBlank, [UELink]) Decimal
type FullUpdateEntrySet = UpdateEntrySet (Either UE_RO (UEUnk, [UELink])) ()
data EntryCRU
= ToUpdate (Either TotalUpdateEntrySet FullUpdateEntrySet)
| ToRead ReadEntry
| ToInsert (Tx CommitR)
-------------------------------------------------------------------------------
-- misc
data TxRecord = TxRecord
{ trDate :: !Day
, trAmount :: !Decimal
, trDesc :: !TxDesc
, trOther :: !(M.Map T.Text T.Text)
, trFile :: !FilePath
}
deriving (Show, Eq, Ord)
data Tree a = Branch !a ![Tree a] | Leaf !a deriving (Show)
accountSign :: AcntType -> AcntSign
accountSign AssetT = Debit
accountSign ExpenseT = Debit
accountSign IncomeT = Credit
accountSign LiabilityT = Credit
accountSign EquityT = Credit
data HalfEntrySet v0 vN = HalfEntrySet
{ hesPrimary :: !(Entry AcntID v0 TagID)
, hesOther :: ![Entry AcntID vN TagID]
}
deriving (Show)
data EntrySet v0 vp0 vpN vtN = EntrySet
{ esTotalValue :: !v0
, esCurrency :: !CurrencyRId
, esFrom :: !(HalfEntrySet vp0 vpN)
, esTo :: !(HalfEntrySet () vtN)
}
deriving (Show)
type TotalEntrySet v0 vpN vtN = EntrySet v0 () vpN vtN
type FullEntrySet vp0 vpN vtN = EntrySet () vp0 vpN vtN
type PrimaryEntrySet = TotalEntrySet Decimal EntryValue EntryLink
type SecondayEntrySet = FullEntrySet EntryValue EntryValue EntryLink
type TransferEntrySet = SecondayEntrySet
type ShadowEntrySet = TotalEntrySet Double EntryValue EntryLink
data TxCommit = HistoryCommit CommitR | BudgetCommit CommitR T.Text
deriving (Eq, Ord, Show)
data TxMeta k = TxMeta
{ txmDate :: !Day
, txmPriority :: !Int
, txmDesc :: !TxDesc
, txmCommit :: !k
}
deriving (Show, Eq, Ord)
data Tx k = Tx
{ txMeta :: !(TxMeta k)
, txPrimary :: !(Either PrimaryEntrySet TransferEntrySet)
, txOther :: ![Either SecondayEntrySet ShadowEntrySet]
}
deriving (Generic, Show)
data InsertEntry = InsertEntry
{ ieCached :: !(Maybe CachedEntry)
, ieEntry :: !(Entry AccountRId Decimal TagRId)
}
data InsertEntrySet = InsertEntrySet
{ iesCurrency :: !CurrencyRId
, iesFromEntries :: !(NonEmpty InsertEntry)
, iesToEntries :: !(NonEmpty InsertEntry)
}
data InsertTx = InsertTx
{ itxMeta :: !(TxMeta CommitR)
, itxEntrySets :: !(NonEmpty InsertEntrySet)
}
deriving (Generic)
data EntryValue_ a = EntryValue_ TransferType a
deriving (Show, Functor, Foldable, Traversable)
data EntryValue = EntryFixed Decimal | EntryPercent Double | EntryBalance Decimal
deriving (Show, Eq, Ord)
data EntryLink = LinkValue EntryValue | LinkIndex LinkedNumGetter
deriving (Show)
data MatchRes a = MatchPass !a | MatchFail | MatchSkip
--------------------------------------------------------------------------------
-- exception types
data MatchType = MatchNumeric | MatchText deriving (Show)
data EntryIDType = AcntField | CurField | TagField deriving (Show)
data LookupSuberr
= EntryIDField !EntryIDType
| EntryValField
| MatchField !MatchType
| DBKey !EntryIDType
deriving (Show)
data PatternSuberr = ZeroLength | ZeroRepeats deriving (Show)
data DBLinkSubError
= DBLinkNoScale
| DBLinkNoValue
| DBLinkInvalidValue !Rational !Bool
| DBLinkInvalidBalance
| DBLinkInvalidPercent
deriving (Show)
data DBSubError
= DBShouldBeEmpty
| DBMultiScope
| DBUpdateUnbalanced
| DBLinkError !EntryRId !DBLinkSubError
deriving (Show)
data AppError
= RegexError !T.Text
| MatchValPrecisionError !Natural !Natural
| AccountTypeError !AcntID !(NE.NonEmpty AcntType)
| StatementIOError !T.Text
| ParseError !T.Text
| ConversionError !T.Text !Bool
| LookupError !LookupSuberr !T.Text
| DatePatternError !Natural !Natural !(Maybe Natural) !PatternSuberr
| DaySpanError !Gregorian !(Maybe Gregorian)
| StatementError ![TxRecord] ![StatementParserRe]
| PeriodError !Day !Day
| LinkError !EntryIndex !EntryIndex
| DBError !DBSubError
deriving (Show)
newtype AppException = AppException [AppError]
deriving (Show, Semigroup) via [AppError]
instance Exception AppException
type MonadAppError = MonadError AppException
type AppExceptT = ExceptT AppException
type AppExcept = AppExceptT Identity
type StatementParserRe = StatementParser (T.Text, Regex)
type TransferMatcherRe = TransferMatcher_ Regex
type TxOptsRe = TxOpts (T.Text, Regex)
type FieldMatcherRe = FieldMatcher (T.Text, Regex)

File diff suppressed because it is too large Load Diff

View File

@ -87,7 +87,6 @@ dependencies:
- filepath
- mtl
- persistent-mtl >= 0.3.0.0
- Decimal >= 0.5.2
library:
source-dirs: lib/