module Internal.Insert ( insertBudget , splitHistory , insertHistTransfer , readHistStmt , insertHistStmt ) where import Control.Monad.Except import Data.Hashable import Database.Persist.Monad import Internal.Statement import Internal.Types import Internal.Utils import RIO hiding (to) import qualified RIO.List as L import qualified RIO.Map as M import qualified RIO.NonEmpty as NE import qualified RIO.Text as T import RIO.Time -------------------------------------------------------------------------------- -- intervals expandDatePat :: Bounds -> DatePat -> InsertExcept [Day] expandDatePat b (Cron cp) = expandCronPat b cp expandDatePat i (Mod mp) = return $ expandModPat mp i expandModPat :: ModPat -> Bounds -> [Day] expandModPat ModPat {mpStart = s, mpBy = b, mpUnit = u, mpRepeats = r} bs = takeWhile (<= upper) $ (`addFun` start) . (* b') <$> maybe id (take . fromIntegral) r [0 ..] where (lower, upper) = expandBounds bs start = maybe lower fromGregorian' s b' = fromIntegral b addFun = case u of Day -> addDays Week -> addDays . (* 7) Month -> addGregorianMonthsClip Year -> addGregorianYearsClip expandCronPat :: Bounds -> CronPat -> InsertExcept [Day] expandCronPat b CronPat {cpYear, cpMonth, cpDay, cpWeekly} = combineError3 yRes mRes dRes $ \ys ms ds -> filter validWeekday $ mapMaybe (uncurry3 toDay) $ takeWhile (\((y, _), m, d) -> (y, m, d) <= (yb1, mb1, db1)) $ dropWhile (\((y, _), m, d) -> (y, m, d) < (yb0, mb0, db0)) $ [(y, m, d) | y <- (\y -> (y, isLeapYear y)) <$> ys, m <- ms, d <- ds] where yRes = case cpYear of Nothing -> return [yb0 .. yb1] Just pat -> do ys <- expandMDYPat (fromIntegral yb0) (fromIntegral yb1) pat return $ dropWhile (< yb0) $ fromIntegral <$> ys mRes = expandMD 12 cpMonth dRes = expandMD 31 cpDay (s, e) = expandBounds b (yb0, mb0, db0) = toGregorian s (yb1, mb1, db1) = toGregorian $ addDays (-1) e expandMD lim = fmap (fromIntegral <$>) . maybe (return [1 .. lim]) (expandMDYPat 1 lim) expandW (OnDay x) = [fromEnum x] expandW (OnDays xs) = fromEnum <$> xs ws = maybe [] expandW cpWeekly validWeekday = if null ws then const True else \day -> dayToWeekday day `elem` ws toDay (y, leap) m d | m == 2 && (not leap && d > 28 || leap && d > 29) = Nothing | m `elem` [4, 6, 9, 11] && d > 30 = Nothing | otherwise = Just $ fromGregorian y m d expandMDYPat :: Natural -> Natural -> MDYPat -> InsertExcept [Natural] expandMDYPat lower upper (Single x) = return [x | lower <= x && x <= upper] expandMDYPat lower upper (Multi xs) = return $ dropWhile (<= lower) $ takeWhile (<= upper) xs expandMDYPat lower upper (After x) = return [max lower x .. upper] expandMDYPat lower upper (Before x) = return [lower .. min upper x] expandMDYPat lower upper (Between x y) = return [max lower x .. min upper y] expandMDYPat lower upper (Repeat RepeatPat {rpStart = s, rpBy = b, rpRepeats = r}) | b < 1 = throwError $ InsertException [PatternError s b r ZeroLength] | otherwise = do k <- limit r return $ dropWhile (<= lower) $ takeWhile (<= k) [s + i * b | i <- [0 ..]] where limit Nothing = return upper limit (Just n) -- this guard not only produces the error for the user but also protects -- from an underflow below it | n < 1 = throwError $ InsertException [PatternError s b r ZeroRepeats] | otherwise = return $ min (s + b * (n - 1)) upper dayToWeekday :: Day -> Int dayToWeekday (ModifiedJulianDay d) = mod (fromIntegral d + 2) 7 withDates :: (MonadSqlQuery m, MonadFinance m, MonadInsertError m) => DatePat -> (Day -> m a) -> m [a] withDates dp f = do bounds <- askDBState kmBudgetInterval days <- liftExcept $ expandDatePat bounds dp combineErrors $ fmap f days foldDates :: (MonadSqlQuery m, MonadFinance m, MonadInsertError m) => DatePat -> Day -> (Day -> Day -> m a) -> m [a] foldDates dp start f = do bounds <- askDBState kmBudgetInterval days <- liftExcept $ expandDatePat bounds dp combineErrors $ snd $ L.mapAccumL (\prevDay day -> (day, f prevDay day)) start days -------------------------------------------------------------------------------- -- budget -- each budget (designated at the top level by a 'name') is processed in the -- following steps -- 1. expand all transactions given the desired date range and date patterns for -- each directive in the budget -- 2. sort all transactions by date -- 3. propagate all balances forward, and while doing so assign values to each -- transaction (some of which depend on the 'current' balance of the -- target account) -- 4. assign shadow transactions (TODO) -- 5. insert all transactions insertBudget :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => Budget -> m [UnbalancedTransfer] insertBudget b@Budget { bgtLabel , bgtIncomes , bgtTransfers , bgtShadowTransfers , bgtPretax , bgtTax , bgtPosttax } = whenHash CTBudget b [] $ \key -> do intAllos <- combineError3 pre_ tax_ post_ (,,) let res1 = mapErrors (insertIncome key bgtLabel intAllos) bgtIncomes let res2 = expandTransfers key bgtLabel bgtTransfers txs <- combineError (concat <$> res1) res2 (++) m <- askDBState kmCurrency shadow <- liftExcept $ addShadowTransfers m bgtShadowTransfers txs void $ mapErrors insertBudgetTx $ balanceTransfers $ txs ++ shadow return $ shadow ++ txs where pre_ = sortAllos bgtPretax tax_ = sortAllos bgtTax post_ = sortAllos bgtPosttax sortAllos = liftExcept . combineErrors . fmap sortAllo type BoundAllocation = Allocation (Day, Day) type IntAllocations = ( [BoundAllocation PretaxValue] , [BoundAllocation TaxValue] , [BoundAllocation PosttaxValue] ) -- TODO this should actually error if there is no ultimate end date? sortAllo :: MultiAllocation v -> InsertExcept (BoundAllocation v) sortAllo a@Allocation {alloAmts = as} = do bs <- foldBounds (return []) $ L.sortOn amtWhen as return $ a {alloAmts = reverse bs} where foldBounds acc [] = acc foldBounds acc (x : xs) = let res = case xs of [] -> resolveBounds $ amtWhen x (y : _) -> resolveBounds_ (intStart $ amtWhen y) $ amtWhen x concatRes bs acc' = x {amtWhen = expandBounds bs} : acc' in foldBounds (combineError res acc concatRes) xs -- TODO this is going to be O(n*m), which might be a problem? addShadowTransfers :: CurrencyMap -> [ShadowTransfer] -> [UnbalancedTransfer] -> InsertExcept [UnbalancedTransfer] addShadowTransfers cm ms txs = fmap catMaybes $ combineErrors $ fmap (uncurry (fromShadow cm)) $ [(t, m) | t <- txs, m <- ms] fromShadow :: CurrencyMap -> UnbalancedTransfer -> ShadowTransfer -> InsertExcept (Maybe UnbalancedTransfer) fromShadow cm tx t@ShadowTransfer {stFrom, stTo, stDesc, stRatio, stCurrency, stType} = do res <- shadowMatches (stMatch t) tx v <- roundPrecisionCur (initialCurrency stCurrency) cm stRatio return $ if not res then Nothing else Just $ -- TODO does this actually share the same metadata as the "parent" tx? FlatTransfer { cbtMeta = cbtMeta tx , cbtWhen = cbtWhen tx , cbtCur = stCurrency , cbtFrom = stFrom , cbtTo = stTo , cbtValue = UnbalancedValue stType $ v * cvValue (cbtValue tx) , cbtDesc = stDesc } shadowMatches :: TransferMatcher -> UnbalancedTransfer -> InsertExcept Bool shadowMatches TransferMatcher {tmFrom, tmTo, tmDate, tmVal} tx = do valRes <- valMatches tmVal $ cvValue $ cbtValue tx return $ memberMaybe (taAcnt $ cbtFrom tx) tmFrom && memberMaybe (taAcnt $ cbtTo tx) tmTo && maybe True (`dateMatches` cbtWhen tx) tmDate && valRes where memberMaybe x AcntSet {asList, asInclude} = (if asInclude then id else not) $ x `elem` asList balanceTransfers :: [UnbalancedTransfer] -> [BalancedTransfer] balanceTransfers ts = snd $ L.mapAccumR go M.empty $ reverse $ L.sortOn cbtWhen ts where go bals f@FlatTransfer {cbtFrom, cbtTo, cbtValue = UnbalancedValue {cvValue, cvType}} = let (bals', v) = mapAdd cbtTo x $ mapAdd_ cbtFrom (-x) bals x = amtToMove v cvType cvValue in (bals', f {cbtValue = x}) -- TODO might need to query signs to make this intuitive; as it is this will -- probably work, but for credit accounts I might need to supply a negative -- target value amtToMove _ BTFixed x = x amtToMove bal BTPercent x = -(x / 100 * bal) amtToMove bal BTTarget x = x - bal mapAdd_ :: (Ord k, Num v) => k -> v -> M.Map k v -> M.Map k v mapAdd_ k v m = fst $ mapAdd k v m mapAdd :: (Ord k, Num v) => k -> v -> M.Map k v -> (M.Map k v, v) mapAdd k v m = (new, M.findWithDefault (error "this should not happen") k new) where new = M.alter (maybe (Just v) (Just . (+ v))) k m data BudgetMeta = BudgetMeta { bmCommit :: !CommitRId , bmName :: !T.Text } deriving (Show) data FlatTransfer v = FlatTransfer { cbtFrom :: !TaggedAcnt , cbtTo :: !TaggedAcnt , cbtValue :: !v , cbtWhen :: !Day , cbtDesc :: !T.Text , cbtMeta :: !BudgetMeta , cbtCur :: !BudgetCurrency } deriving (Show) data UnbalancedValue = UnbalancedValue { cvType :: !BudgetTransferType , cvValue :: !Rational } deriving (Show) type UnbalancedTransfer = FlatTransfer UnbalancedValue type BalancedTransfer = FlatTransfer Rational insertIncome :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => CommitRId -> T.Text -> IntAllocations -> Income -> m [UnbalancedTransfer] insertIncome key name (intPre, intTax, intPost) Income { incWhen , incCurrency , incFrom , incPretax , incPosttax , incTaxes , incToBal , incGross , incPayPeriod } = do -- TODO check that the other accounts are not income somewhere here _ <- checkAcntType IncomeT $ taAcnt incFrom precision <- lookupCurrencyPrec incCurrency let gross = roundPrecision precision incGross -- TODO this will scan the interval allocations fully each time -- iteration which is a total waste, but the fix requires turning this -- loop into a fold which I don't feel like doing now :( res <- foldDates incWhen start (allocate precision gross) return $ concat res where start = fromGregorian' $ pStart incPayPeriod pType' = pType incPayPeriod meta = BudgetMeta key name flatPre = concatMap flattenAllo incPretax flatTax = concatMap flattenAllo incTaxes flatPost = concatMap flattenAllo incPosttax sumAllos = sum . fmap faValue -- TODO ensure these are all the "correct" accounts allocate precision gross prevDay day = do scaler <- liftExcept $ periodScaler pType' prevDay day let (preDeductions, pre) = allocatePre precision gross $ flatPre ++ concatMap (selectAllos day) intPre tax = allocateTax precision gross preDeductions scaler $ flatTax ++ concatMap (selectAllos day) intTax aftertaxGross = sumAllos $ tax ++ pre post = allocatePost precision aftertaxGross $ flatPost ++ concatMap (selectAllos day) intPost balance = aftertaxGross - sumAllos post bal = FlatTransfer { cbtMeta = meta , cbtWhen = day , cbtFrom = incFrom , cbtCur = NoX incCurrency , cbtTo = incToBal , cbtValue = UnbalancedValue BTFixed balance , cbtDesc = "balance after deductions" } in if balance < 0 then throwError $ InsertException [IncomeError day name balance] else return (bal : fmap (allo2Trans meta day incFrom) (pre ++ tax ++ post)) type PeriodScaler = Natural -> Double -> Double -- TODO we probably don't need to check for 1/0 each time periodScaler :: PeriodType -> Day -> Day -> InsertExcept PeriodScaler periodScaler pt prev cur | interval > 0 = return scale -- TODO fix error here | otherwise = throwError $ InsertException undefined where interval = diffDays cur prev startDay = dayOfWeek prev days = L.sort $ fmap (diff startDay . fromWeekday) $ L.nub $ case pt of Hourly HourlyPeriod {hpWorkingDays} -> hpWorkingDays Daily ds -> ds diff a b = fromIntegral $ mod (fromEnum a - fromEnum b) 7 n = let (nFull, nPart) = divMod interval 7 daysFull = fromIntegral (length days) * nFull daysTail = fromIntegral $ length $ takeWhile (< nPart) days in fromIntegral $ daysFull + daysTail scale precision x = case pt of Hourly HourlyPeriod {hpAnnualHours, hpDailyHours} -> fromRational (rnd $ x / fromIntegral hpAnnualHours) * fromIntegral hpDailyHours * n Daily _ -> x * n / 365.25 where rnd = roundPrecision precision allocatePre :: Natural -> Rational -> [FlatAllocation PretaxValue] -> (M.Map T.Text Rational, [FlatAllocation Rational]) allocatePre precision gross = L.mapAccumR go M.empty where go m f@FlatAllocation {faValue} = let c = preCategory faValue p = preValue faValue v = if prePercent faValue then (roundPrecision 3 p / 100) * gross else roundPrecision precision p in (mapAdd_ c v m, f {faValue = v}) allo2Trans :: BudgetMeta -> Day -> TaggedAcnt -> FlatAllocation Rational -> UnbalancedTransfer allo2Trans meta day from FlatAllocation {faValue, faTo, faDesc, faCur} = FlatTransfer { cbtMeta = meta , cbtWhen = day , cbtFrom = from , cbtCur = faCur , cbtTo = faTo , cbtValue = UnbalancedValue BTFixed faValue , cbtDesc = faDesc } allocateTax :: Natural -> Rational -> M.Map T.Text Rational -> PeriodScaler -> [FlatAllocation TaxValue] -> [FlatAllocation Rational] allocateTax precision gross preDeds f = fmap (fmap go) where go TaxValue {tvCategories, tvMethod} = let agi = gross - sum (mapMaybe (`M.lookup` preDeds) tvCategories) in case tvMethod of TMPercent p -> roundPrecision 3 p / 100 * agi TMBracket TaxProgression {tpDeductible, tpBrackets} -> let taxDed = roundPrecision precision $ f precision tpDeductible in foldBracket f precision (agi - taxDed) tpBrackets allocatePost :: Natural -> Rational -> [FlatAllocation PosttaxValue] -> [FlatAllocation Rational] allocatePost precision aftertax = fmap (fmap go) where go PosttaxValue {postValue, postPercent} = let v = postValue in if postPercent then aftertax * roundPrecision 3 v / 100 else roundPrecision precision v foldBracket :: PeriodScaler -> Natural -> Rational -> [TaxBracket] -> Rational foldBracket f precision agi bs = fst $ foldr go (0, agi) $ L.sortOn tbLowerLimit bs where go TaxBracket {tbLowerLimit, tbPercent} (acc, remain) = let l = roundPrecision precision $ f precision tbLowerLimit p = roundPrecision 3 tbPercent / 100 in if remain < l then (acc + p * (remain - l), l) else (acc, remain) data FlatAllocation v = FlatAllocation { faValue :: !v , faDesc :: !T.Text , faTo :: !TaggedAcnt , faCur :: !BudgetCurrency } deriving (Functor) flattenAllo :: SingleAllocation v -> [FlatAllocation v] flattenAllo Allocation {alloAmts, alloCur, alloTo} = fmap go alloAmts where go Amount {amtValue, amtDesc} = FlatAllocation { faCur = NoX alloCur , faTo = alloTo , faValue = amtValue , faDesc = amtDesc } -- ASSUME allocations are sorted selectAllos :: Day -> BoundAllocation v -> [FlatAllocation v] selectAllos day Allocation {alloAmts, alloCur, alloTo} = fmap go $ takeWhile ((`inBounds` day) . amtWhen) $ dropWhile ((day <) . fst . amtWhen) alloAmts where go Amount {amtValue, amtDesc} = FlatAllocation { faCur = NoX alloCur , faTo = alloTo , faValue = amtValue , faDesc = amtDesc } expandTransfers :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => CommitRId -> T.Text -> [BudgetTransfer] -> m [UnbalancedTransfer] expandTransfers key name ts = fmap (L.sortOn cbtWhen . concat) $ combineErrors $ fmap (expandTransfer key name) ts initialCurrency :: BudgetCurrency -> CurID initialCurrency (NoX c) = c initialCurrency (X Exchange {xFromCur = c}) = c expandTransfer :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => CommitRId -> T.Text -> BudgetTransfer -> m [UnbalancedTransfer] expandTransfer key name Transfer {transAmounts, transTo, transCurrency, transFrom} = do precision <- lookupCurrencyPrec $ initialCurrency transCurrency fmap concat $ combineErrors $ fmap (go precision) transAmounts where go precision Amount { amtWhen = pat , amtValue = BudgetTransferValue {btVal = v, btType = y} , amtDesc = desc } = withDates pat $ \day -> do let meta = BudgetMeta {bmCommit = key, bmName = name} return FlatTransfer { cbtMeta = meta , cbtWhen = day , cbtCur = transCurrency , cbtFrom = transFrom , cbtTo = transTo , cbtValue = UnbalancedValue y $ roundPrecision precision v , cbtDesc = desc } insertBudgetTx :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => BalancedTransfer -> m () insertBudgetTx FlatTransfer {cbtFrom, cbtTo, cbtMeta, cbtCur, cbtValue, cbtDesc, cbtWhen} = do ((sFrom, sTo), exchange) <- splitPair cbtFrom cbtTo cbtCur cbtValue insertPair sFrom sTo forM_ exchange $ uncurry insertPair where insertPair from to = do k <- insert $ TransactionR (bmCommit cbtMeta) cbtWhen cbtDesc insertBudgetLabel k from insertBudgetLabel k to insertBudgetLabel k split = do sk <- insertSplit k split insert_ $ BudgetLabelR sk $ bmName cbtMeta type SplitPair = (KeySplit, KeySplit) splitPair :: (MonadInsertError m, MonadFinance m) => TaggedAcnt -> TaggedAcnt -> BudgetCurrency -> Rational -> m (SplitPair, Maybe SplitPair) splitPair from to cur val = case cur of NoX curid -> (,Nothing) <$> pair curid from to val X Exchange {xFromCur, xToCur, xAcnt, xRate} -> do let middle = TaggedAcnt xAcnt [] let res1 = pair xFromCur from middle val let res2 = pair xToCur middle to (val * roundPrecision 3 xRate) combineError res1 res2 $ \a b -> (a, Just b) where pair curid from_ to_ v = do let s1 = split curid from_ (-v) let s2 = split curid to_ v combineError s1 s2 (,) split c TaggedAcnt {taAcnt, taTags} v = resolveSplit $ Entry { eAcnt = taAcnt , eValue = v , eComment = "" , eCurrency = c , eTags = taTags } checkAcntType :: (MonadInsertError m, MonadFinance m) => AcntType -> AcntID -> m AcntID checkAcntType t = checkAcntTypes (t :| []) checkAcntTypes :: (MonadInsertError m, MonadFinance m) => NE.NonEmpty AcntType -> AcntID -> m AcntID checkAcntTypes ts i = go =<< lookupAccountType i where go t | t `L.elem` ts = return i | otherwise = throwError $ InsertException [AccountError i ts] -------------------------------------------------------------------------------- -- statements splitHistory :: [History] -> ([HistTransfer], [Statement]) splitHistory = partitionEithers . fmap go where go (HistTransfer x) = Left x go (HistStatement x) = Right x -- insertStatement -- :: (MonadUnliftIO m, MonadSqlQuery m, MonadFinance m) -- => History -- -> m () -- insertStatement (HistTransfer m) = liftIOExceptT $ insertManual m -- insertStatement (HistStatement i) = insertImport i insertHistTransfer :: (MonadInsertError m, MonadSqlQuery m, MonadFinance m) => HistTransfer -> m () insertHistTransfer m@Transfer { transFrom = from , transTo = to , transCurrency = u , transAmounts = amts } = do whenHash CTManual m () $ \c -> do bounds <- askDBState kmStatementInterval let precRes = lookupCurrencyPrec u let go Amount {amtWhen, amtValue, amtDesc} = do let dayRes = liftExcept $ expandDatePat bounds amtWhen (days, precision) <- combineError dayRes precRes (,) let tx day = txPair day from to u (roundPrecision precision amtValue) amtDesc keys <- combineErrors $ fmap tx days mapM_ (insertTx c) keys void $ combineErrors $ fmap go amts readHistStmt :: (MonadUnliftIO m, MonadFinance m) => Statement -> m (Maybe (CommitR, [KeyTx])) readHistStmt i = whenHash_ CTImport i $ do bs <- readImport i bounds <- expandBounds <$> askDBState kmStatementInterval liftIOExceptT $ mapErrors resolveTx $ filter (inBounds bounds . txDate) bs insertHistStmt :: (MonadSqlQuery m) => CommitR -> [KeyTx] -> m () insertHistStmt c ks = do ck <- insert c mapM_ (insertTx ck) ks -- insertImport -- :: (MonadUnliftIO m, MonadSqlQuery m, MonadFinance m) -- => Statement -- -> m () -- insertImport i = whenHash CTImport i () $ \c -> do -- -- TODO this isn't efficient, the whole file will be read and maybe no -- -- transactions will be desired -- bs <- readImport i -- bounds <- expandBounds <$> askDBState kmStatementInterval -- keys <- liftIOExceptT $ mapErrors resolveTx $ filter (inBounds bounds . txDate) bs -- mapM_ (insertTx c) keys -------------------------------------------------------------------------------- -- low-level transaction stuff -- TODO tags here? txPair :: (MonadInsertError m, MonadFinance m) => Day -> AcntID -> AcntID -> CurID -> Rational -> T.Text -> m KeyTx txPair day from to cur val desc = resolveTx tx where split a v = Entry { eAcnt = a , eValue = v , eComment = "" , eCurrency = cur , eTags = [] } tx = Tx { txDescr = desc , txDate = day , txSplits = [split from (-val), split to val] } resolveTx :: (MonadInsertError m, MonadFinance m) => BalTx -> m KeyTx resolveTx t@Tx {txSplits = ss} = fmap (\kss -> t {txSplits = kss}) $ combineErrors $ fmap resolveSplit ss resolveSplit :: (MonadInsertError m, MonadFinance m) => BalSplit -> m KeySplit resolveSplit s@Entry {eAcnt, eCurrency, eValue, eTags} = do let aRes = lookupAccountKey eAcnt let cRes = lookupCurrencyKey eCurrency let sRes = lookupAccountSign eAcnt let tagRes = combineErrors $ fmap lookupTag eTags -- TODO correct sign here? -- TODO lenses would be nice here combineError (combineError3 aRes cRes sRes (,,)) tagRes $ \(aid, cid, sign) tags -> s { eAcnt = aid , eCurrency = cid , eValue = eValue * fromIntegral (sign2Int sign) , eTags = tags } insertTx :: MonadSqlQuery m => CommitRId -> KeyTx -> m () insertTx c Tx {txDate = d, txDescr = e, txSplits = ss} = do k <- insert $ TransactionR c d e mapM_ (insertSplit k) ss insertSplit :: MonadSqlQuery m => TransactionRId -> KeySplit -> m SplitRId insertSplit t Entry {eAcnt, eCurrency, eValue, eComment, eTags} = do k <- insert $ SplitR t eCurrency eAcnt eComment eValue mapM_ (insert_ . TagRelationR k) eTags return k lookupAccount :: (MonadInsertError m, MonadFinance m) => AcntID -> m (AccountRId, AcntSign, AcntType) lookupAccount = lookupFinance AcntField kmAccount lookupAccountKey :: (MonadInsertError m, MonadFinance m) => AcntID -> m AccountRId lookupAccountKey = fmap fstOf3 . lookupAccount lookupAccountSign :: (MonadInsertError m, MonadFinance m) => AcntID -> m AcntSign lookupAccountSign = fmap sndOf3 . lookupAccount lookupAccountType :: (MonadInsertError m, MonadFinance m) => AcntID -> m AcntType lookupAccountType = fmap thdOf3 . lookupAccount lookupCurrency :: (MonadInsertError m, MonadFinance m) => T.Text -> m (CurrencyRId, Natural) lookupCurrency = lookupFinance CurField kmCurrency lookupCurrencyKey :: (MonadInsertError m, MonadFinance m) => AcntID -> m CurrencyRId lookupCurrencyKey = fmap fst . lookupCurrency lookupCurrencyPrec :: (MonadInsertError m, MonadFinance m) => AcntID -> m Natural lookupCurrencyPrec = fmap snd . lookupCurrency lookupTag :: (MonadInsertError m, MonadFinance m) => TagID -> m TagRId lookupTag = lookupFinance TagField kmTag lookupFinance :: (MonadInsertError m, MonadFinance m) => SplitIDType -> (DBState -> M.Map T.Text a) -> T.Text -> m a lookupFinance t f c = (liftExcept . lookupErr (DBKey t) c) =<< askDBState f -- TODO this hashes twice (not that it really matters) whenHash :: (Hashable a, MonadFinance m, MonadSqlQuery m) => ConfigType -> a -> b -> (CommitRId -> m b) -> m b whenHash t o def f = do let h = hash o hs <- askDBState kmNewCommits if h `elem` hs then f =<< insert (CommitR h t) else return def whenHash_ :: (Hashable a, MonadFinance m) => ConfigType -> a -> m b -> m (Maybe (CommitR, b)) whenHash_ t o f = do let h = hash o let c = CommitR h t hs <- askDBState kmNewCommits if h `elem` hs then Just . (c,) <$> f else return Nothing