module Internal.Database ( runDB , readConfigState , nukeTables , updateDBState , tree2Records , flattenAcntRoot , indexAcntRoot , paths2IDs , mkPool , insertEntry , readUpdates , insertAll , updateTx ) where import Conduit import Control.Monad.Except import Control.Monad.Logger import Data.Decimal import Data.Hashable import Database.Esqueleto.Experimental ((:&) (..), (==.), (?.), (^.)) import qualified Database.Esqueleto.Experimental as E import Database.Esqueleto.Internal.Internal (SqlSelect) import Database.Persist.Monad import Database.Persist.Sqlite hiding ( Statement , delete , deleteWhere , insert , insertKey , insert_ , runMigration , update , (==.) , (||.) ) import GHC.Err import Internal.Types.Main import Internal.Utils import RIO hiding (LogFunc, isNothing, on, (^.)) import qualified RIO.List as L import qualified RIO.Map as M import qualified RIO.NonEmpty as NE import qualified RIO.Set as S import qualified RIO.Text as T runDB :: MonadUnliftIO m => SqlConfig -> SqlQueryT (NoLoggingT m) a -> m a runDB c more = runNoLoggingT $ do pool <- mkPool c runSqlQueryT pool $ do _ <- lift askLoggerIO runMigration migrateAll more mkPool :: (MonadLoggerIO m, MonadUnliftIO m) => SqlConfig -> m ConnectionPool mkPool c = case c of Sqlite p -> createSqlitePool p 10 -- conn <- open p -- wrapConnection conn logfn Postgres -> error "postgres not implemented" nukeTables :: MonadSqlQuery m => m () nukeTables = do deleteWhere ([] :: [Filter CommitR]) deleteWhere ([] :: [Filter CurrencyR]) deleteWhere ([] :: [Filter AccountR]) deleteWhere ([] :: [Filter TransactionR]) -- showBalances :: MonadUnliftIO m => SqlPersistT m () -- showBalances = do -- xs <- select $ do -- (accounts :& splits :& txs) <- -- from -- $ table @AccountR -- `innerJoin` table @SplitR -- `on` (\(a :& s) -> a ^. AccountRId ==. s ^. SplitRAccount) -- `innerJoin` table @TransactionR -- `on` (\(_ :& s :& t) -> s ^. SplitRTransaction ==. t ^. TransactionRId) -- where_ $ -- isNothing (txs ^. TransactionRBucket) -- &&. ( (accounts ^. AccountRFullpath `like` val "asset" ++. (%)) -- ||. (accounts ^. AccountRFullpath `like` val "liability" ++. (%)) -- ) -- groupBy (accounts ^. AccountRFullpath, accounts ^. AccountRName) -- return -- ( accounts ^. AccountRFullpath -- , accounts ^. AccountRName -- , sum_ $ splits ^. SplitRValue -- ) -- -- TODO super stetchy table printing thingy -- liftIO $ do -- putStrLn $ T.unpack $ fmt "Account" "Balance" -- putStrLn $ T.unpack $ fmt (T.replicate 60 "-") (T.replicate 15 "-") -- mapM_ (putStrLn . T.unpack . fmtBalance) xs -- where -- fmtBalance (path, name, bal) = fmt (toFullPath path name) (toBal bal) -- fmt a b = T.unwords ["| ", pad 60 a, " | ", pad 15 b, " |"] -- pad n xs = T.append xs $ T.replicate (n - T.length xs) " " -- toFullPath path name = T.unwords [unValue @T.Text path, "/", unValue @T.Text name] -- toBal = maybe "???" (fmtRational 2) . unValue readConfigState :: (MonadAppError m, MonadSqlQuery m) => Config -> [Budget] -> [History] -> m ConfigState readConfigState c bs hs = do (acnts2Ins, acntsRem, acnts2Del) <- diff newAcnts (pathsIns, _, pathsDel) <- diff newPaths (curs2Ins, cursRem, curs2Del) <- diff newCurs (tags2Ins, tagsRem, tags2Del) <- diff newTags let amap = makeAcntMap $ acnts2Ins ++ (fst <$> acntsRem) let cmap = currencyMap $ curs2Ins ++ (fst <$> cursRem) let tmap = makeTagMap $ tags2Ins ++ (fst <$> tagsRem) let fromMap f = S.fromList . fmap f . M.elems let existing = ExistingConfig (fromMap fst amap) (fromMap id tmap) (fromMap cpID cmap) (curBgts, curHistTrs, curHistSts) <- readCurrentCommits -- TODO refine this test to include the whole db (with data already mixed -- in this algorithm) let bsRes = BudgetSpan <$> resolveScope budgetInterval let hsRes = HistorySpan <$> resolveScope statementInterval combineErrorM bsRes hsRes $ \bscope hscope -> do let dbempty = null $ curBgts ++ curHistTrs ++ curHistSts (bChanged, hChanged) <- readScopeChanged dbempty bscope hscope bgt <- makeTxCRUD existing bs curBgts bChanged hTrans <- makeTxCRUD existing ts curHistTrs hChanged hStmt <- makeTxCRUD existing ss curHistSts hChanged return $ ConfigState { csCurrencies = CRUDOps curs2Ins () () curs2Del , csTags = CRUDOps tags2Ins () () tags2Del , csAccounts = CRUDOps acnts2Ins () () acnts2Del , csPaths = CRUDOps pathsIns () () pathsDel , csBudgets = bgt , csHistTrans = hTrans , csHistStmts = hStmt , csAccountMap = amap , csCurrencyMap = cmap , csTagMap = tmap , csBudgetScope = bscope , csHistoryScope = hscope } where (ts, ss) = splitHistory hs diff new = setDiffWith (\a b -> E.entityKey a == b) new <$> readCurrentIds (newAcnts, newPaths) = indexAcntRoot $ accounts c newTags = tag2Record <$> tags c newCurs = currency2Record <$> currencies c resolveScope f = liftExcept $ resolveDaySpan $ f $ scope c readScopeChanged :: (MonadAppError m, MonadSqlQuery m) => Bool -> BudgetSpan -> HistorySpan -> m (Bool, Bool) readScopeChanged dbempty bscope hscope = do rs <- dumpTbl -- TODO these errors should only fire when someone messed with the DB case rs of [] -> if dbempty then return (True, True) else throwAppError $ DBError DBShouldBeEmpty [r] -> do let (ConfigStateR h b) = E.entityVal r return (bscope /= b, hscope /= h) _ -> throwAppError $ DBError DBMultiScope makeTxCRUD :: (MonadAppError m, MonadSqlQuery m, Hashable a) => ExistingConfig -> [a] -> [CommitHash] -> Bool -> m ( CRUDOps [a] [ReadEntry] [Either TotalUpdateEntrySet FullUpdateEntrySet] DeleteTxs ) makeTxCRUD existing newThings curThings scopeChanged = do let (toDelHashes, overlap, toIns) = setDiffWith (\a b -> hash b == unCommitHash a) curThings newThings -- Check the overlap for rows with accounts/tags/currencies that -- won't exist on the next update. Those with invalid IDs will be set aside -- to delete and reinsert (which may also fail) later (noRetry, toInsRetry) <- readInvalidIds existing overlap let (toDelAllHashes, toInsAll) = bimap (toDelHashes ++) (toIns ++) $ L.unzip toInsRetry -- If we are inserting or deleting something or the scope changed, pull out -- the remainder of the entries to update/read as we are (re)inserting other -- stuff (this is necessary because a given transaction may depend on the -- value of previous transactions, even if they are already in the DB). (toRead, toUpdate) <- case (toInsAll, toDelAllHashes, scopeChanged) of ([], [], False) -> return ([], []) _ -> readUpdates noRetry toDelAll <- readTxIds toDelAllHashes return $ CRUDOps toInsAll toRead toUpdate toDelAll readTxIds :: MonadSqlQuery m => [CommitHash] -> m DeleteTxs readTxIds cs = do xs <- selectE $ do (commits :& txs :& ess :& es :& ts) <- E.from $ E.table `E.innerJoin` E.table `E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit) `E.innerJoin` E.table `E.on` (\(_ :& t :& es) -> t ^. TransactionRId ==. es ^. EntrySetRTransaction) `E.innerJoin` E.table `E.on` (\(_ :& _ :& es :& e) -> es ^. EntrySetRId ==. e ^. EntryREntryset) `E.innerJoin` E.table `E.on` (\(_ :& _ :& _ :& e :& t) -> e ^. EntryRId ==. t ^. TagRelationREntry) E.where_ $ commits ^. CommitRHash `E.in_` E.valList cs return ( txs ^. TransactionRId , ess ^. EntrySetRId , es ^. EntryRId , ts ^. TagRelationRId ) let (txs, ss, es, ts) = L.unzip4 xs return $ DeleteTxs { dtTxs = go txs , dtEntrySets = go ss , dtEntries = go es , dtTagRelations = E.unValue <$> ts } where go :: Eq a => [E.Value a] -> [a] go = fmap (E.unValue . NE.head) . NE.group splitHistory :: [History] -> ([PairedTransfer], [Statement]) splitHistory = partitionEithers . fmap go where go (HistTransfer x) = Left x go (HistStatement x) = Right x makeTagMap :: [Entity TagR] -> TagMap makeTagMap = M.fromList . fmap (\e -> (tagRSymbol $ entityVal e, entityKey e)) tag2Record :: Tag -> Entity TagR tag2Record t@Tag {tagID, tagDesc} = Entity (toKey t) $ TagR (TagID tagID) tagDesc currency2Record :: Currency -> Entity CurrencyR currency2Record c@Currency {curSymbol, curFullname, curPrecision} = Entity (toKey c) $ CurrencyR (CurID curSymbol) curFullname (fromIntegral curPrecision) readCurrentIds :: PersistEntity a => MonadSqlQuery m => m [Key a] readCurrentIds = fmap (E.unValue <$>) $ selectE $ do rs <- E.from E.table return (rs ^. E.persistIdField) readCurrentCommits :: MonadSqlQuery m => m ([CommitHash], [CommitHash], [CommitHash]) readCurrentCommits = do xs <- selectE $ do rs <- E.from E.table return (rs ^. CommitRHash, rs ^. CommitRType) return $ foldr go ([], [], []) xs where go (x, t) (bs, ts, hs) = let y = E.unValue x in case E.unValue t of CTBudget -> (y : bs, ts, hs) CTHistoryTransfer -> (bs, y : ts, hs) CTHistoryStatement -> (bs, ts, y : hs) setDiffWith :: (a -> b -> Bool) -> [a] -> [b] -> ([a], [(a, b)], [b]) setDiffWith f = go [] [] where go inA inBoth [] bs = (inA, inBoth, bs) go inA inBoth as [] = (as ++ inA, inBoth, []) go inA inBoth (a : as) bs = let (res, bs') = findDelete (f a) bs in case res of Nothing -> go (a : inA) inBoth as bs Just b -> go inA ((a, b) : inBoth) as bs' findDelete :: (a -> Bool) -> [a] -> (Maybe a, [a]) findDelete f xs = case break f xs of (ys, []) -> (Nothing, ys) (ys, z : zs) -> (Just z, ys ++ zs) dumpTbl :: (MonadSqlQuery m, PersistEntity r) => m [Entity r] dumpTbl = selectE $ E.from E.table currencyMap :: [Entity CurrencyR] -> CurrencyMap currencyMap = M.fromList . fmap ( \e -> ( currencyRSymbol $ entityVal e , CurrencyPrec (entityKey e) $ currencyRPrecision $ entityVal e ) ) toKey :: (ToBackendKey SqlBackend b, Hashable a) => a -> Key b toKey = toSqlKey . fromIntegral . hash makeAccountEntity :: AccountR -> Entity AccountR makeAccountEntity a = Entity (toKey $ accountRFullpath a) a makeAccountR :: AcntType -> T.Text -> [T.Text] -> T.Text -> Bool -> AccountR makeAccountR atype name parents des = AccountR name path des (accountSign atype) where path = AcntPath atype (reverse $ name : parents) tree2Records :: AcntType -> AccountTree -> ([Entity AccountR], [Entity AccountPathR]) tree2Records t = go [] where go ps (Placeholder d n cs) = let (parentKeys, parentNames) = L.unzip ps a = acnt n parentNames d False k = entityKey a thesePaths = expand k parentKeys in bimap ((a :) . concat) ((thesePaths ++) . concat) $ L.unzip $ go ((k, n) : ps) <$> cs go ps (Account d n) = let (parentKeys, parentNames) = L.unzip ps a = acnt n parentNames d True k = entityKey a in ([a], expand k parentKeys) expand h0 hs = (\(h, d) -> accountPathRecord h h0 d) <$> zip (h0 : hs) [0 ..] acnt n ps d = makeAccountEntity . makeAccountR t n ps d accountPathRecord :: Key AccountR -> Key AccountR -> Int -> Entity AccountPathR accountPathRecord p c d = Entity (toKey (fromSqlKey p, fromSqlKey c)) $ AccountPathR p c d paths2IDs :: [(AcntPath, a)] -> [(AcntID, a)] paths2IDs = uncurry zip . first trimNames . L.unzip . L.sortOn fst . fmap (first (NE.reverse . acntPath2NonEmpty)) -- none of these errors should fire assuming that input is sorted and unique trimNames :: [NonEmpty T.Text] -> [AcntID] trimNames = fmap (AcntID . T.intercalate "_") . go [] where go :: [T.Text] -> [NonEmpty T.Text] -> [[T.Text]] go prev = concatMap (go' prev) . groupNonEmpty go' prev (key, rest) = case rest of (_ :| []) -> [key : prev] ([] :| xs) -> let next = key : prev other = go next $ fmap (fromMaybe err . NE.nonEmpty) xs in next : other (x :| xs) -> go (key : prev) $ fmap (fromMaybe err . NE.nonEmpty) (x : xs) err = error "account path list either not sorted or contains duplicates" groupNonEmpty :: Ord a => [NonEmpty a] -> [(a, NonEmpty [a])] groupNonEmpty = fmap (second (NE.tail <$>)) . groupWith NE.head flattenAcntRoot :: AccountRoot -> [(AcntType, AccountTree)] flattenAcntRoot AccountRoot_ {arIncome, arExpenses, arLiabilities, arAssets, arEquity} = ((IncomeT,) <$> arIncome) ++ ((ExpenseT,) <$> arExpenses) ++ ((LiabilityT,) <$> arLiabilities) ++ ((AssetT,) <$> arAssets) ++ ((EquityT,) <$> arEquity) makeAcntMap :: [Entity AccountR] -> AccountMap makeAcntMap = M.fromList . paths2IDs . fmap go . filter (accountRLeaf . snd) . fmap (\e -> (E.entityKey e, E.entityVal e)) where go (k, v) = let p = accountRFullpath v in (p, (k, apType p)) indexAcntRoot :: AccountRoot -> ([Entity AccountR], [Entity AccountPathR]) indexAcntRoot = bimap concat concat . L.unzip . fmap (uncurry tree2Records) . flattenAcntRoot updateCD :: ( MonadSqlQuery m , PersistRecordBackend a SqlBackend , PersistRecordBackend b SqlBackend ) => CDOps (Entity a) (Key b) -> m () updateCD (CRUDOps cs () () ds) = do mapM_ deleteKeyE ds insertEntityManyE cs deleteTxs :: MonadSqlQuery m => DeleteTxs -> m () deleteTxs DeleteTxs {dtTxs, dtEntrySets, dtEntries, dtTagRelations} = do mapM_ deleteKeyE dtTxs mapM_ deleteKeyE dtEntrySets mapM_ deleteKeyE dtEntries mapM_ deleteKeyE dtTagRelations updateDBState :: (MonadFinance m, MonadSqlQuery m) => m () updateDBState = do updateCD =<< asks csCurrencies updateCD =<< asks csAccounts updateCD =<< asks csPaths updateCD =<< asks csTags deleteTxs =<< asks (coDelete . csBudgets) deleteTxs =<< asks (coDelete . csHistTrans) deleteTxs =<< asks (coDelete . csHistStmts) b <- asks csBudgetScope h <- asks csHistoryScope repsertE (E.toSqlKey 1) $ ConfigStateR h b readInvalidIds :: MonadSqlQuery m => ExistingConfig -> [(CommitHash, a)] -> m ([CommitHash], [(CommitHash, a)]) readInvalidIds ExistingConfig {ecAccounts, ecCurrencies, ecTags} xs = do rs <- selectE $ do (commits :& _ :& entrysets :& entries :& tags) <- E.from $ E.table `E.innerJoin` E.table `E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit) `E.innerJoin` E.table `E.on` (\(_ :& t :& es) -> t ^. TransactionRId ==. es ^. EntrySetRTransaction) `E.innerJoin` E.table `E.on` (\(_ :& _ :& es :& e) -> es ^. EntrySetRId ==. e ^. EntryREntryset) `E.leftJoin` E.table `E.on` (\(_ :& _ :& _ :& e :& r) -> E.just (e ^. EntryRId) ==. r ?. TagRelationREntry) E.where_ $ commits ^. CommitRHash `E.in_` E.valList (fmap fst xs) return ( commits ^. CommitRHash , entrysets ^. EntrySetRCurrency , entries ^. EntryRAccount , tags ?. TagRelationRTag ) -- TODO there are faster ways to do this; may/may not matter let cs = go ecCurrencies $ fmap (\(i, E.Value c, _, _) -> (i, c)) rs let as = go ecAccounts $ fmap (\(i, _, E.Value a, _) -> (i, a)) rs let ts = go ecTags [(i, t) | (i, _, _, E.Value (Just t)) <- rs] let valid = (cs `S.intersection` as) `S.intersection` ts let (a0, _) = first (fst <$>) $ L.partition ((`S.member` valid) . fst) xs return (a0, []) where go existing = S.fromList . fmap (E.unValue . fst) . L.filter (all (`S.member` existing) . snd) . groupKey id readUpdates :: (MonadAppError m, MonadSqlQuery m) => [CommitHash] -> m ([ReadEntry], [Either TotalUpdateEntrySet FullUpdateEntrySet]) readUpdates hashes = do xs <- selectE $ do (commits :& txs :& entrysets :& entries :& currencies) <- E.from $ E.table @CommitR `E.innerJoin` E.table @TransactionR `E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit) `E.innerJoin` E.table @EntrySetR `E.on` (\(_ :& t :& es) -> t ^. TransactionRId ==. es ^. EntrySetRTransaction) `E.innerJoin` E.table @EntryR `E.on` (\(_ :& _ :& es :& e) -> es ^. EntrySetRId ==. e ^. EntryREntryset) `E.innerJoin` E.table @CurrencyR `E.on` (\(_ :& _ :& es :& _ :& cur) -> es ^. EntrySetRCurrency ==. cur ^. CurrencyRId) E.where_ $ commits ^. CommitRHash `E.in_` E.valList hashes return ( entrysets ^. EntrySetRRebalance , ( ( entrysets ^. EntrySetRId , txs ^. TransactionRDate , txs ^. TransactionRBudgetName , txs ^. TransactionRPriority , ( entrysets ^. EntrySetRCurrency , currencies ^. CurrencyRPrecision ) ) , entries ) ) let (toUpdate, toRead) = L.partition (E.unValue . fst) xs toUpdate' <- liftExcept $ mapErrors makeUES $ groupKey (\(i, _, _, _, _) -> i) (snd <$> toUpdate) let toRead' = fmap (makeRE . snd) toRead return (toRead', toUpdate') where makeUES ((_, day, name, pri, (curID, prec)), es) = do let prec' = fromIntegral $ E.unValue prec let cur = E.unValue curID let res = bimap NE.nonEmpty NE.nonEmpty $ NE.partition ((< 0) . entryRIndex . snd) $ NE.sortWith (entryRIndex . snd) $ fmap (\e -> (entityKey e, entityVal e)) es case res of (Just froms, Just tos) -> do let tot = sum $ fmap (entryRValue . snd) froms (from0, fromRO, fromUnkVec) <- splitFrom prec' $ NE.reverse froms (from0', fromUnk, to0, toRO, toUnk) <- splitTo prec' from0 fromUnkVec tos -- TODO WAP (wet ass programming) return $ case from0' of Left x -> Left $ UpdateEntrySet { utDate = E.unValue day , utCurrency = cur , utFrom0 = x , utTo0 = to0 , utFromRO = fromRO , utToRO = toRO , utFromUnk = fromUnk , utToUnk = toUnk , utTotalValue = realFracToDecimalP prec' tot , utBudget = E.unValue name , utPriority = E.unValue pri } Right x -> Right $ UpdateEntrySet { utDate = E.unValue day , utCurrency = cur , utFrom0 = x , utTo0 = to0 , utFromRO = fromRO , utToRO = toRO , utFromUnk = fromUnk , utToUnk = toUnk , utTotalValue = () , utBudget = E.unValue name , utPriority = E.unValue pri } -- TODO this error is lame _ -> throwAppError $ DBError $ DBUpdateUnbalanced makeRE ((_, day, name, pri, (curID, prec)), entry) = do let e = entityVal entry in ReadEntry { reDate = E.unValue day , reCurrency = E.unValue curID , reAcnt = entryRAccount e , reValue = realFracToDecimal (fromIntegral $ E.unValue prec) (entryRValue e) , reBudget = E.unValue name , rePriority = E.unValue pri } splitFrom :: Precision -> NonEmpty (EntryRId, EntryR) -> AppExcept (Either UEBlank (Either UE_RO UEUnk), [UE_RO], [UEUnk]) splitFrom prec (f0 :| fs) = do -- ASSUME entries are sorted by index -- TODO combine errors here let f0Res = readDeferredValue prec f0 let fsRes = mapErrors (splitDeferredValue prec) fs combineErrorM f0Res fsRes $ \f0' fs' -> do let (ro, unk) = partitionEithers fs' -- let idxVec = V.fromList $ fmap (either (const Nothing) Just) fs' return (f0', ro, unk) splitTo :: Precision -> Either UEBlank (Either UE_RO UEUnk) -> [UEUnk] -> NonEmpty (EntryRId, EntryR) -> AppExcept ( Either (UEBlank, [UELink]) (Either UE_RO (UEUnk, [UELink])) , [(UEUnk, [UELink])] , UEBlank , [UE_RO] , [UEUnk] ) splitTo prec from0 fromUnk (t0 :| ts) = do -- How to split the credit side of the database transaction in 1024 easy -- steps: -- -- 1. Split incoming entries (except primary) into those with links and not let (unlinked, linked) = partitionEithers $ fmap splitLinked ts -- 2. For unlinked entries, split into read-only and unknown entries let unlinkedRes = partitionEithers <$> mapErrors (splitDeferredValue prec) unlinked -- 3. For linked entries, split into those that link to the primary debit -- entry and not let (linked0, linkedN) = second (groupKey id) $ L.partition ((== 0) . fst) linked -- 4. For linked entries that don't link to the primary debit entry, split -- into those that link to an unknown debit entry or not. Those that -- are not will be read-only and those that are will be collected with -- their linked debit entry let linkedRes = zipPaired prec fromUnk linkedN -- 5. For entries linked to the primary debit entry, turn them into linked -- entries (lazily only used when needed later) let from0Res = mapErrors (makeLinkUnk . snd) linked0 combineErrorM3 from0Res linkedRes unlinkedRes $ -- 6. Depending on the type of primary debit entry we have, add linked -- entries if it is either an unknown or a blank (to be solved) entry, -- or turn the remaining linked entries to read-only and add to the other -- read-only entries \from0Links (fromUnk', toROLinkedN) (toROUnlinked, toUnk) -> do let (from0', toROLinked0) = case from0 of Left blnk -> (Left (blnk, from0Links), []) Right (Left ro) -> (Right $ Left ro, makeRoUE prec . snd . snd <$> linked0) Right (Right unk) -> (Right $ Right (unk, from0Links), []) return (from0', fromUnk', primary, toROLinked0 ++ toROLinkedN ++ toROUnlinked, toUnk) where primary = uncurry makeUnkUE t0 splitLinked t@(_, e) = maybe (Left t) (Right . (,t)) $ entryRCachedLink e -- | Match linked credit entries with unknown entries, returning a list of -- matches and non-matching (read-only) credit entries. ASSUME both lists are -- sorted according to index and 'fst' respectively. NOTE the output will NOT be -- sorted. zipPaired :: Precision -> [UEUnk] -> [(EntryIndex, NonEmpty (EntryRId, EntryR))] -> AppExcept ([(UEUnk, [UELink])], [UE_RO]) zipPaired prec = go ([], []) where nolinks = ((,[]) <$>) go acc fs [] = return $ first (nolinks fs ++) acc go (facc, tacc) fs ((ti, tls) : ts) = do let (lesser, rest) = L.span ((< ti) . ueIndex) fs links <- NE.toList <$> mapErrors makeLinkUnk tls let (nextLink, fs') = case rest of (r0 : rs) | ueIndex r0 == ti -> (Just (r0, links), rs) | otherwise -> (Nothing, rest) _ -> (Nothing, rest) let acc' = (nolinks lesser ++ facc, tacc) let ros = NE.toList $ makeRoUE prec . snd <$> tls let f = maybe (second (++ ros)) (\u -> first (u :)) nextLink go (f acc') fs' ts makeLinkUnk :: (EntryRId, EntryR) -> AppExcept UELink makeLinkUnk (k, e) = -- TODO error should state that scale must be present for a link in the db maybe (throwAppError $ DBError $ DBLinkError k DBLinkNoScale) (return . makeUE k e . LinkScale) $ fromRational <$> entryRCachedValue e splitDeferredValue :: Precision -> (EntryRId, EntryR) -> AppExcept (Either UE_RO UEUnk) splitDeferredValue prec p@(k, _) = do res <- readDeferredValue prec p case res of Left _ -> throwAppError $ DBError $ DBLinkError k DBLinkNoValue Right x -> return x readDeferredValue :: Precision -> (EntryRId, EntryR) -> AppExcept (Either UEBlank (Either UE_RO UEUnk)) readDeferredValue prec (k, e) = case (entryRCachedValue e, entryRCachedType e) of (Nothing, Just TFixed) -> return $ Right $ Left $ makeRoUE prec e (Just v, Just TBalance) -> go $ fmap EVBalance $ makeUE k e $ realFracToDecimalP prec v (Just v, Just TPercent) -> go $ fmap EVPercent $ makeUE k e $ fromRational v (Nothing, Nothing) -> return $ Left $ makeUnkUE k e (Just v, Nothing) -> err $ DBLinkInvalidValue v False (Just v, Just TFixed) -> err $ DBLinkInvalidValue v True (Nothing, Just TBalance) -> err $ DBLinkInvalidBalance (Nothing, Just TPercent) -> err $ DBLinkInvalidPercent where go = return . Right . Right err = throwAppError . DBError . DBLinkError k makeUE :: i -> EntryR -> v -> UpdateEntry i v makeUE k e v = UpdateEntry k (entryRAccount e) v (entryRIndex e) makeRoUE :: Precision -> EntryR -> UpdateEntry () StaticValue makeRoUE prec e = makeUE () e $ StaticValue (realFracToDecimalP prec $ entryRValue e) makeUnkUE :: EntryRId -> EntryR -> UpdateEntry EntryRId () makeUnkUE k e = makeUE k e () insertAll :: (MonadAppError m, MonadSqlQuery m, MonadFinance m) => [EntryCRU] -> m () insertAll ebs = do (toUpdate, toInsert) <- balanceTxs ebs mapM_ updateTx toUpdate forM_ (groupWith itxCommit toInsert) $ \(c, ts) -> do ck <- insert c mapM_ (insertTx ck) ts insertTx :: MonadSqlQuery m => CommitRId -> InsertTx -> m () insertTx c InsertTx {itxDate, itxDescr, itxEntrySets, itxBudget, itxPriority} = do k <- insert $ TransactionR c itxDate itxDescr itxBudget itxPriority mapM_ (uncurry (insertEntrySet k)) $ zip [0 ..] (NE.toList itxEntrySets) where insertEntrySet tk i InsertEntrySet {iesCurrency, iesFromEntries, iesToEntries} = do let fs = NE.toList iesFromEntries let ts = NE.toList iesToEntries let rebalance = any (isJust . ieCached) (fs ++ ts) esk <- insert $ EntrySetR tk iesCurrency i rebalance mapM_ (uncurry (go esk)) $ zip [0 ..] ts ++ zip (negate <$> [1 ..]) fs go k i e = void $ insertEntry k i e insertEntry :: MonadSqlQuery m => EntrySetRId -> EntryIndex -> InsertEntry -> m EntryRId insertEntry k i InsertEntry { ieEntry = Entry {eValue, eTags, eAcnt, eComment} , ieCached } = do ek <- insert $ EntryR k eAcnt eComment (toRational eValue) i cval ctype deflink mapM_ (insert_ . TagRelationR ek) eTags return ek where (cval, ctype, deflink) = case ieCached of (Just (CachedLink x s)) -> (Just (toRational s), Nothing, Just x) (Just (CachedBalance b)) -> (Just (toRational b), Just TBalance, Nothing) (Just (CachedPercent p)) -> (Just (toRational p), Just TPercent, Nothing) Nothing -> (Nothing, Just TFixed, Nothing) updateTx :: MonadSqlQuery m => UEBalanced -> m () updateTx UpdateEntry {ueID, ueValue} = update ueID [EntryRValue =. v] where v = toRational $ unStaticValue ueValue repsertE :: (MonadSqlQuery m, PersistRecordBackend r SqlBackend) => Key r -> r -> m () repsertE k r = unsafeLiftSql "esqueleto-repsert" (E.repsert k r) selectE :: (MonadSqlQuery m, SqlSelect a r) => E.SqlQuery a -> m [r] selectE q = unsafeLiftSql "esqueleto-select" (E.select q) deleteKeyE :: (MonadSqlQuery m, PersistRecordBackend a SqlBackend) => Key a -> m () deleteKeyE q = unsafeLiftSql "esqueleto-deleteKey" (E.deleteKey q) insertEntityManyE :: (MonadSqlQuery m, PersistRecordBackend a SqlBackend) => [Entity a] -> m () insertEntityManyE q = unsafeLiftSql "esqueleto-insertEntityMany" (E.insertEntityMany q)