pwncash/lib/Internal/History.hs

577 lines
19 KiB
Haskell

module Internal.History
( readHistStmt
, readHistTransfer
, splitHistory
, readHistoryCRUD
)
where
import Control.Monad.Except
import Data.Csv
import Data.Decimal
import Data.Foldable
import Data.Hashable
import GHC.Real
import Internal.Types.Main
import Internal.Utils
import RIO hiding (to)
import qualified RIO.ByteString.Lazy as BL
import RIO.FilePath
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.Text as T
import RIO.Time
import qualified RIO.Vector as V
import Text.Regex.TDFA hiding (matchAll)
readHistoryCRUD
:: (MonadUnliftIO m, MonadFinance m)
=> FilePath
-> PreHistoryCRUD
-> m FinalHistoryCRUD
readHistoryCRUD root o@CRUDOps {coCreate = (ts, ss)} = do
-- TODO multithread this for some extra fun :)
ss' <- mapErrorsIO (readHistStmt root) ss
fromEitherM $ runExceptT $ do
let sRes = mapErrors (ExceptT . return) ss'
let tRes = mapErrors readHistTransfer ts
combineError sRes tRes $ \ss'' ts' -> o {coCreate = concat ss'' ++ concat ts'}
-- NOTE keep statement and transfer readers separate because the former needs
-- the IO monad, and thus will throw IO errors rather than using the ExceptT
-- thingy
splitHistory :: [History] -> ([PairedTransfer], [Statement])
splitHistory = partitionEithers . fmap go
where
go (HistTransfer x) = Left x
go (HistStatement x) = Right x
--------------------------------------------------------------------------------
-- Transfers
readHistTransfer
:: (MonadAppError m, MonadFinance m)
=> PairedTransfer
-> m [Tx CommitR]
readHistTransfer ht = do
bounds <- asks (unHSpan . tsHistoryScope)
expandTransfer c bounds ht
where
c = CommitR (CommitHash $ hash ht) CTHistoryTransfer
--------------------------------------------------------------------------------
-- Statements
readHistStmt
:: (MonadUnliftIO m, MonadFinance m)
=> FilePath
-> Statement
-> m (Either AppException [Tx CommitR])
readHistStmt root i = do
bounds <- asks (unHSpan . tsHistoryScope)
bs <- readImport root i
return $ filter (inDaySpan bounds . txmDate . txMeta) . fmap go <$> bs
where
go t@Tx {txMeta = m} =
t {txMeta = m {txmCommit = CommitR (CommitHash $ hash i) CTHistoryStatement}}
-- TODO this probably won't scale well (pipes?)
readImport
:: (MonadUnliftIO m, MonadFinance m)
=> FilePath
-> Statement
-> m (Either AppException [Tx ()])
readImport root Statement {stmtTxOpts, stmtParsers, stmtSkipLines, stmtDelim, stmtPaths} = do
let ores = compileOptions stmtTxOpts
let cres = combineErrors $ compileMatch <$> stmtParsers
(compiledOptions, compiledMatches) <- liftIOExcept $ combineError ores cres (,)
let readStmt = readImport_ stmtSkipLines stmtDelim compiledOptions
records <- L.sort . concat <$> mapErrorsIO readStmt paths
runExceptT (matchRecords compiledMatches records)
where
paths = (root </>) <$> stmtPaths
readImport_
:: MonadUnliftIO m
=> Natural
-> Word
-> TxOptsRe
-> FilePath
-> m [TxRecord]
readImport_ n delim tns p = do
res <- tryIO $ BL.readFile p
bs <- fromEither $ first (AppException . (: []) . StatementIOError . tshow) res
case decodeByNameWithP (parseTxRecord p tns) opts $ skip bs of
Left m -> throwIO $ AppException [ParseError $ T.pack m]
Right (_, v) -> return $ catMaybes $ V.toList v
where
opts = defaultDecodeOptions {decDelimiter = fromIntegral delim}
skip = BL.intercalate "\n" . L.drop (fromIntegral n) . BL.split 10
-- TODO handle this better, this maybe thing is a hack to skip lines with
-- blank dates but will likely want to make this more flexible
parseTxRecord :: FilePath -> TxOptsRe -> NamedRecord -> Parser (Maybe TxRecord)
parseTxRecord
p
TxOpts
{ toDate
, toDesc
, toAmount
, toOther
, toDateFmt
, toSkipBlankDate
, toSkipBlankAmount
, toSkipBlankDescription
, toSkipBlankOther
}
r =
do
-- Parse date, desc, and other fields first. If these are blank and we
-- allow them to be blank, then skip the line.
d <- getField toDate
e <- getField toDesc
os <- M.fromList <$> mapM (\n -> (n,) <$> getField n) toOther
let skipLine =
(toSkipBlankDate && d == "")
|| (toSkipBlankDescription && e == "")
|| elem "" (mapMaybe (`M.lookup` os) toSkipBlankOther)
if skipLine
then return Nothing
else do
d' <- parseTimeM True defaultTimeLocale (T.unpack toDateFmt) d
-- Next try to parse the amount field, which can also trigger a line
-- skip (or cause a parse fail)
((\a -> TxRecord d' a e os p) <$>) <$> parseTxAmount
where
parseTxAmount = case toAmount of
-- The amount column is extra confusing because it can either be one
-- or two columns, so keep track of this with a maybe. Return Nothing
-- to indicate we want to skip the line.
--
-- In the case of one column, parse the amount with the indicated regex,
-- and force the sign if we are given a column that specifies the sign.
-- If the amount is blank, skip the line if we allow blanks.
AmountSingle TxAmount1 {a1Column, a1Fmt, a1Sign} -> do
v <- getField a1Column
signf <- case a1Sign of
Nothing -> return id
Just (TxSign signCol positive) -> do
s <- getField signCol
let k = if s == positive then 1 else -1
return ((* k) . abs)
fmap signf <$> parseOrSkipDecimal True a1Fmt v
-- In the case of dual columns, each column represents either debit or
-- credit. Only one is expected to be populated at once, so throw parse
-- error if both or neither are blank. In the case where only one is
-- present, parse the value and force the sign depending on which column
-- it was. Note that in this case, we can't skip the line if the amount
-- is blank, because by extension this implies that both columns are
-- blank which we don't allow.
AmountDual TxAmount2 {a2Positive, a2Negative, a2Fmt} -> do
f1 <- getField a2Positive
f2 <- getField a2Negative
(sign, v) <- case (f1, f2) of
("", "") -> fail "Positive and Negative fields undefined"
(v, "") -> return (1, v)
("", v) -> return (-1, v)
(_, _) -> fail "Positive and Negative fields defined"
Just . (sign *) . abs <$> parseDecimal False a2Fmt v
parseOrSkipDecimal wantSign fmt s = do
case (s, toSkipBlankAmount) of
("", True) -> return Nothing
(s', _) -> Just <$> parseDecimal wantSign fmt s'
getField :: FromField a => T.Text -> Parser a
getField f = r .: T.encodeUtf8 f
matchRecords :: MonadFinance m => [StatementParserRe] -> [TxRecord] -> AppExceptT m [Tx ()]
matchRecords ms rs = do
(matched, unmatched, notfound) <- matchAll (matchPriorities ms) rs
case (matched, unmatched, notfound) of
(ms_, [], []) -> return ms_
(_, us, ns) -> throwError $ AppException [StatementError us ns]
matchPriorities :: [StatementParserRe] -> [MatchGroup]
matchPriorities =
fmap matchToGroup
. L.groupBy (\a b -> spPriority a == spPriority b)
. L.sortOn (Down . spPriority)
matchToGroup :: [StatementParserRe] -> MatchGroup
matchToGroup ms =
uncurry MatchGroup $
first (L.sortOn spDate) $
L.partition (isJust . spDate) ms
data MatchGroup = MatchGroup
{ mgDate :: ![StatementParserRe]
, mgNoDate :: ![StatementParserRe]
}
deriving (Show)
data Zipped a = Zipped ![a] ![a]
data Unzipped a = Unzipped ![a] ![a] ![a]
initZipper :: [a] -> Zipped a
initZipper = Zipped []
resetZipper :: Zipped a -> Zipped a
resetZipper = initZipper . recoverZipper
recoverZipper :: Zipped a -> [a]
recoverZipper (Zipped as bs) = reverse as ++ bs
zipperSlice
:: (a -> b -> Ordering)
-> b
-> Zipped a
-> Either (Zipped a) (Unzipped a)
zipperSlice f x = go
where
go z@(Zipped _ []) = Left z
go z@(Zipped bs (a : as)) =
case f a x of
GT -> go $ Zipped (a : bs) as
EQ -> Right $ goEq (Unzipped bs [a] as)
LT -> Left z
goEq z@(Unzipped _ _ []) = z
goEq z@(Unzipped bs cs (a : as)) =
case f a x of
GT -> goEq $ Unzipped (a : bs) cs as
EQ -> goEq $ Unzipped bs (a : cs) as
LT -> z
zipperMatch
:: MonadFinance m
=> Unzipped StatementParserRe
-> TxRecord
-> AppExceptT m (Zipped StatementParserRe, MatchRes (Tx ()))
zipperMatch (Unzipped bs cs as) x = go [] cs
where
go _ [] = return (Zipped bs $ cs ++ as, MatchFail)
go prev (m : ms) = do
res <- matches m x
case res of
MatchFail -> go (m : prev) ms
skipOrPass ->
let ps = reverse prev
ms' = maybe ms (: ms) (matchDec m)
in return (Zipped bs $ ps ++ ms' ++ as, skipOrPass)
zipperMatch'
:: MonadFinance m
=> Zipped StatementParserRe
-> TxRecord
-> AppExceptT m (Zipped StatementParserRe, MatchRes (Tx ()))
zipperMatch' z x = go z
where
go (Zipped bs (a : as)) = do
res <- matches a x
case res of
MatchFail -> go (Zipped (a : bs) as)
skipOrPass ->
return (Zipped (maybe bs (: bs) $ matchDec a) as, skipOrPass)
go z' = return (z', MatchFail)
matchDec :: StatementParserRe -> Maybe StatementParserRe
matchDec m = case spTimes m of
Just 1 -> Nothing
Just n -> Just $ m {spTimes = Just $ n - 1}
Nothing -> Just m
matchAll
:: MonadFinance m
=> [MatchGroup]
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchAll = go ([], [])
where
go (matched, unused) gs rs = case (gs, rs) of
(_, []) -> return (matched, [], unused)
([], _) -> return (matched, rs, unused)
(g : gs', _) -> do
(ts, unmatched, us) <- matchGroup g rs
go (ts ++ matched, us ++ unused) gs' unmatched
matchGroup
:: MonadFinance m
=> MatchGroup
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchGroup MatchGroup {mgDate = ds, mgNoDate = ns} rs = do
(md, rest, ud) <- matchDates ds rs
(mn, unmatched, un) <- matchNonDates ns rest
return (md ++ mn, unmatched, filter ((/= Nothing) . spTimes) $ ud ++ un)
matchDates
:: MonadFinance m
=> [StatementParserRe]
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchDates ms = go ([], [], initZipper ms)
where
go (matched, unmatched, z) [] =
return
( catMaybes matched
, reverse unmatched
, recoverZipper z
)
go (matched, unmatched, z) (r : rs) =
case zipperSlice findDate r z of
Left zipped -> go (matched, r : unmatched, zipped) rs
Right unzipped -> do
(z', res) <- zipperMatch unzipped r
let (m, u) = case res of
(MatchPass p) -> (Just p : matched, unmatched)
MatchSkip -> (Nothing : matched, unmatched)
MatchFail -> (matched, r : unmatched)
go (m, u, z') rs
findDate m r = maybe EQ (`compareDate` trDate r) $ spDate m
matchNonDates
:: MonadFinance m
=> [StatementParserRe]
-> [TxRecord]
-> AppExceptT m ([Tx ()], [TxRecord], [StatementParserRe])
matchNonDates ms = go ([], [], initZipper ms)
where
go (matched, unmatched, z) [] =
return
( catMaybes matched
, reverse unmatched
, recoverZipper z
)
go (matched, unmatched, z) (r : rs) = do
(z', res) <- zipperMatch' z r
let (m, u) = case res of
MatchPass p -> (Just p : matched, unmatched)
MatchSkip -> (Nothing : matched, unmatched)
MatchFail -> (matched, r : unmatched)
in go (m, u, resetZipper z') rs
matches
:: MonadFinance m
=> StatementParserRe
-> TxRecord
-> AppExceptT m (MatchRes (Tx ()))
matches
StatementParser {spTx, spOther, spVal, spDate, spDesc, spPriority}
r@TxRecord {trDate, trAmount, trDesc, trOther} = do
res <- liftInner $
combineError3 val other desc $
\x y z -> x && y && z && date
if res
then maybe (return MatchSkip) convert spTx
else return MatchFail
where
val = valMatches spVal $ toRational trAmount
date = maybe True (`dateMatches` trDate) spDate
other = foldM (\a o -> (a &&) <$> otherMatches trOther o) True spOther
desc = maybe (return True) (matchMaybe (unTxDesc trDesc) . snd) spDesc
convert tg = MatchPass <$> toTx (fromIntegral spPriority) tg r
toTx :: MonadFinance m => Int -> TxGetter -> TxRecord -> AppExceptT m (Tx ())
toTx
priority
TxGetter
{ tgFrom
, tgTo
, tgCurrency
, tgOtherEntries
, tgScale
}
r@TxRecord {trAmount, trDate, trDesc} = do
combineError curRes subRes $ \(cur, f, t) ss ->
Tx
{ txMeta = TxMeta trDate priority trDesc ()
, txPrimary =
Left $
EntrySet
{ esTotalValue = roundToP (cpPrec cur) trAmount *. tgScale
, esCurrency = cpID cur
, esFrom = f
, esTo = t
}
, txOther = Left <$> ss
}
where
curRes = do
m <- asks tsCurrencyMap
cur <- liftInner $ resolveCurrency m r tgCurrency
let prec = cpPrec cur
let fromRes = liftInner $ resolveHalfEntry resolveFromValue prec r () tgFrom
let toRes = liftInner $ resolveHalfEntry resolveToValue prec r () tgTo
combineError fromRes toRes (cur,,)
subRes = mapErrors (resolveSubGetter r) tgOtherEntries
resolveSubGetter
:: MonadFinance m
=> TxRecord
-> TxSubGetter
-> AppExceptT m SecondayEntrySet
resolveSubGetter r TxSubGetter {tsgFrom, tsgTo, tsgValue, tsgCurrency} = do
m <- asks tsCurrencyMap
cur <- liftInner $ resolveCurrency m r tsgCurrency
let prec = cpPrec cur
let toRes = resolveHalfEntry resolveToValue prec r () tsgTo
let valRes = liftInner $ resolveValue prec r tsgValue
liftInner $ combineErrorM toRes valRes $ \t v -> do
f <- resolveHalfEntry resolveFromValue prec r v tsgFrom
return $
EntrySet
{ esTotalValue = ()
, esCurrency = cpID cur
, esFrom = f
, esTo = t
}
resolveHalfEntry
:: (Precision -> TxRecord -> n -> AppExcept v')
-> Precision
-> TxRecord
-> v
-> TxHalfGetter (EntryGetter n)
-> AppExcept (HalfEntrySet v v')
resolveHalfEntry f prec r v TxHalfGetter {thgAcnt, thgComment, thgTags, thgEntries} =
combineError acntRes esRes $ \a es ->
HalfEntrySet
{ hesPrimary =
Entry
{ eAcnt = a
, eValue = v
, eComment = thgComment
, eTags = thgTags
}
, hesOther = es
}
where
acntRes = resolveAcnt r thgAcnt
esRes = mapErrors (resolveEntry f prec r) thgEntries
otherMatches :: M.Map T.Text T.Text -> FieldMatcherRe -> AppExcept Bool
otherMatches dict m = case m of
Val (Field n mv) -> valMatches mv =<< (readRational =<< lookup_ MatchNumeric n)
Desc (Field n (_, md)) -> (`matchMaybe` md) =<< lookup_ MatchText n
where
lookup_ t n = lookupErr (MatchField t) n dict
resolveEntry
:: (Precision -> TxRecord -> n -> AppExcept v)
-> Precision
-> TxRecord
-> EntryGetter n
-> AppExcept (Entry AcntID v TagID)
resolveEntry f prec r s@Entry {eAcnt, eValue} =
combineError acntRes valRes $ \a v -> s {eAcnt = a, eValue = v}
where
acntRes = resolveAcnt r eAcnt
valRes = f prec r eValue
resolveFromValue :: Precision -> TxRecord -> EntryNumGetter -> AppExcept EntryValue
resolveFromValue = resolveValue
resolveToValue :: Precision -> TxRecord -> LinkedEntryNumGetter -> AppExcept EntryLink
resolveToValue _ _ (Linked l) = return $ LinkIndex l
resolveToValue prec r (Getter g) = LinkValue <$> resolveValue prec r g
resolveValue :: Precision -> TxRecord -> EntryNumGetter -> AppExcept EntryValue
resolveValue prec TxRecord {trOther, trAmount} s = case s of
(LookupN t) -> EntryFixed . go <$> (readDouble =<< lookupErr EntryValField t trOther)
(ConstN c) -> return $ EntryFixed $ go c
AmountN m -> return $ EntryFixed $ trAmount *. m
BalanceN x -> return $ EntryBalance $ go x
PercentN x -> return $ EntryPercent x
where
go = realFracToDecimalP prec
resolveAcnt :: TxRecord -> EntryAcnt -> AppExcept AcntID
resolveAcnt r e = AcntID <$> resolveEntryField AcntField r (unAcntID <$> e)
resolveCurrency :: CurrencyMap -> TxRecord -> EntryCur -> AppExcept CurrencyPrec
resolveCurrency m r c = do
i <- resolveEntryField CurField r (unCurID <$> c)
case M.lookup (CurID i) m of
Just k -> return k
Nothing -> throwError $ AppException [LookupError (DBKey CurField) i]
resolveEntryField :: EntryIDType -> TxRecord -> EntryTextGetter T.Text -> AppExcept T.Text
resolveEntryField t TxRecord {trOther = o} s = case s of
ConstT p -> return p
LookupT f -> lookup_ f o
MapT (Field f m) -> do
k <- lookup_ f o
lookup_ k m
Map2T (Field (f1, f2) m) -> do
(k1, k2) <- combineError (lookup_ f1 o) (lookup_ f2 o) (,)
lookup_ (k1, k2) m
where
lookup_ :: (Ord k, Show k) => k -> M.Map k v -> AppExcept v
lookup_ = lookupErr (EntryIDField t)
readDouble :: T.Text -> AppExcept Double
readDouble s = case readMaybe $ T.unpack s of
Just x -> return x
Nothing -> throwError $ AppException [ConversionError s True]
readRational :: T.Text -> AppExcept Rational
readRational s = case T.split (== '.') s of
[x] -> maybe err (return . fromInteger) $ readT x
[x, y] -> case (readT x, readT y) of
(Just x', Just y') ->
let p = 10 ^ T.length y
k = if x' >= 0 then 1 else -1
in return $ fromInteger x' + k * y' % p
_ -> err
_ -> err
where
readT = readMaybe . T.unpack
err = throwError $ AppException [ConversionError s False]
compileOptions :: TxOpts T.Text -> AppExcept TxOptsRe
compileOptions = mapM (compileRegex True)
-- compileOptions o@TxOpts {toAmount = pat} = case pat of
-- AmountSingle (TxAmount1 {a1Fmt}) -> do
-- re <- compileRegex True a1Fmt
-- return $ o {toAmountFmt = re}
-- AmountDual (TxAmount2 {a2Fmt}) -> do
-- re <- compileRegex True a2Fmt
-- return $ o {toAmountFmt = re}
compileMatch :: StatementParser T.Text -> AppExcept StatementParserRe
compileMatch m@StatementParser {spDesc, spOther} = do
combineError dres ores $ \d os -> m {spDesc = d, spOther = os}
where
go = compileRegex False
dres = mapM go spDesc
ores = combineErrors $ fmap (mapM go) spOther
parseDecimal :: MonadFail m => Bool -> (T.Text, Regex) -> T.Text -> m Decimal
parseDecimal wantSign (pat, re) s = case (wantSign, matchGroupsMaybe s re) of
(True, [sign, num]) -> do
k <- readSign sign
x <- readNum num
return $ k * x
(False, [num]) -> readNum num
_ -> msg $ T.append "malformed decimal: " s
where
msg :: MonadFail m => T.Text -> m a
msg m =
fail $
T.unpack $
T.unwords [m, "-", keyVals [("pattern", pat), ("query", s)]]
readSign x
| x == "-" = return (-1)
| x == "+" || x == "" = return 1
| otherwise = msg $ T.append "invalid sign: " x
readNum x =
maybe
(msg $ T.unwords ["could not parse", singleQuote x])
return
$ readMaybe
$ T.unpack
$ T.filter (/= ',') x