pwncash/lib/Internal/Budget.hs

510 lines
16 KiB
Haskell

module Internal.Budget (readBudget) where
import Control.Monad.Except
import Data.Foldable
import Internal.Database
import Internal.Types.Main
import Internal.Utils
import RIO hiding (to)
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.NonEmpty as NE
import qualified RIO.Text as T
import RIO.Time
-- each budget (designated at the top level by a 'name') is processed in the
-- following steps
-- 1. expand all transactions given the desired date range and date patterns for
-- each directive in the budget
-- 2. sort all transactions by date
-- 3. propagate all balances forward, and while doing so assign values to each
-- transaction (some of which depend on the 'current' balance of the
-- target account)
-- 4. assign shadow transactions
-- 5. insert all transactions
readBudget
:: (MonadInsertError m, MonadFinance m)
=> Budget
-> m (Either CommitR [Tx TxCommit])
readBudget
b@Budget
{ bgtLabel
, bgtIncomes
, bgtTransfers
, bgtShadowTransfers
, bgtPretax
, bgtTax
, bgtPosttax
, bgtInterval
} =
eitherHash CTBudget b return $ \key -> do
(intAllos, _) <- combineError intAlloRes acntRes (,)
let res1 = mapErrors (readIncome key bgtLabel intAllos bgtInterval) bgtIncomes
let res2 = expandTransfers key bgtLabel bgtInterval bgtTransfers
txs <- combineError (concat <$> res1) res2 (++)
shadow <- addShadowTransfers bgtShadowTransfers txs
return $ txs ++ shadow
where
acntRes = mapErrors isNotIncomeAcnt alloAcnts
intAlloRes = combineError3 pre_ tax_ post_ (,,)
pre_ = sortAllos bgtPretax
tax_ = sortAllos bgtTax
post_ = sortAllos bgtPosttax
sortAllos = liftExcept . mapErrors sortAllo
alloAcnts =
(alloAcnt <$> bgtPretax)
++ (alloAcnt <$> bgtTax)
++ (alloAcnt <$> bgtPosttax)
entryPair
:: (MonadInsertError m, MonadFinance m)
=> TaggedAcnt
-> TaggedAcnt
-> CurID
-> T.Text
-> Double
-> m (EntrySet AcntID CurrencyPrec TagID Rational (EntryValue Rational))
entryPair = entryPair_ (fmap (EntryValue TFixed) . roundPrecisionCur)
entryPair_
:: (MonadInsertError m, MonadFinance m)
=> (CurrencyPrec -> v -> v')
-> TaggedAcnt
-> TaggedAcnt
-> CurID
-> T.Text
-> v
-> m (EntrySet AcntID CurrencyPrec TagID Rational v')
entryPair_ f from to curid com val = do
cp <- lookupCurrency curid
return $ pair cp from to (f cp val)
where
halfEntry :: a -> [t] -> HalfEntrySet a c t v
halfEntry a ts =
HalfEntrySet
{ hesPrimary = Entry {eAcnt = a, eValue = (), eComment = com, eTags = ts}
, hesOther = []
}
pair cp (TaggedAcnt fa fts) (TaggedAcnt ta tts) v =
EntrySet
{ esCurrency = cp
, esTotalValue = v
, esFrom = halfEntry fa fts
, esTo = halfEntry ta tts
}
sortAllo :: MultiAllocation v -> InsertExcept (DaySpanAllocation v)
sortAllo a@Allocation {alloAmts = as} = do
bs <- foldSpan [] $ L.sortOn amtWhen as
return $ a {alloAmts = reverse bs}
where
foldSpan acc [] = return acc
foldSpan acc (x : xs) = do
let start = amtWhen x
res <- case xs of
[] -> resolveDaySpan start
(y : _) -> resolveDaySpan_ (intStart $ amtWhen y) start
foldSpan (x {amtWhen = res} : acc) xs
--------------------------------------------------------------------------------
-- Income
-- TODO this will scan the interval allocations fully each time
-- iteration which is a total waste, but the fix requires turning this
-- loop into a fold which I don't feel like doing now :(
readIncome
:: (MonadInsertError m, MonadFinance m)
=> CommitR
-> T.Text
-> IntAllocations
-> Maybe Interval
-> Income
-> m [Tx TxCommit]
readIncome
key
name
(intPre, intTax, intPost)
localInterval
Income
{ incWhen
, incCurrency
, incFrom
, incPretax
, incPosttax
, incTaxes
, incToBal
, incGross
, incPayPeriod
} =
combineErrorM
(combineError incRes nonIncRes (,))
(combineError precRes dayRes (,))
$ \_ (precision, days) -> do
let gross = roundPrecision precision incGross
concat <$> foldDays (allocate precision gross) start days
where
incRes = isIncomeAcnt $ taAcnt incFrom
nonIncRes =
mapErrors isNotIncomeAcnt $
taAcnt incToBal
: (alloAcnt <$> incPretax)
++ (alloAcnt <$> incTaxes)
++ (alloAcnt <$> incPosttax)
precRes = lookupCurrencyPrec incCurrency
dayRes = askDays incWhen localInterval
start = fromGregorian' $ pStart incPayPeriod
pType' = pType incPayPeriod
meta = BudgetCommit key name
flatPre = concatMap flattenAllo incPretax
flatTax = concatMap flattenAllo incTaxes
flatPost = concatMap flattenAllo incPosttax
sumAllos = sum . fmap faValue
-- TODO ensure these are all the "correct" accounts
allocate precision gross prevDay day = do
scaler <- liftExcept $ periodScaler pType' prevDay day
let (preDeductions, pre) =
allocatePre precision gross $
flatPre ++ concatMap (selectAllos day) intPre
let tax =
allocateTax precision gross preDeductions scaler $
flatTax ++ concatMap (selectAllos day) intTax
aftertaxGross = gross - sumAllos (tax ++ pre)
let post =
allocatePost precision aftertaxGross $
flatPost ++ concatMap (selectAllos day) intPost
let balance = aftertaxGross - sumAllos post
-- TODO double or rational here?
primary <-
entryPair
incFrom
incToBal
incCurrency
"balance after deductions"
(fromRational balance)
allos <- mapErrors (allo2Trans meta day incFrom) (pre ++ tax ++ post)
let bal =
Tx
{ txCommit = meta
, txDate = day
, txPrimary = primary
, txOther = []
, txDescr = "balance after deductions"
}
if balance < 0
then throwError $ InsertException [IncomeError day name balance]
else return (bal : allos)
periodScaler
:: PeriodType
-> Day
-> Day
-> InsertExcept PeriodScaler
periodScaler pt prev cur = return scale
where
n = fromIntegral $ workingDays wds prev cur
wds = case pt of
Hourly HourlyPeriod {hpWorkingDays} -> hpWorkingDays
Daily ds -> ds
scale precision x = case pt of
Hourly HourlyPeriod {hpAnnualHours, hpDailyHours} ->
fromRational (rnd $ x / fromIntegral hpAnnualHours)
* fromIntegral hpDailyHours
* n
Daily _ -> x * n / 365.25
where
rnd = roundPrecision precision
-- ASSUME start < end
workingDays :: [Weekday] -> Day -> Day -> Natural
workingDays wds start end = fromIntegral $ daysFull + daysTail
where
interval = diffDays end start
(nFull, nPart) = divMod interval 7
daysFull = fromIntegral (length wds') * nFull
daysTail = fromIntegral $ length $ takeWhile (< nPart) wds'
startDay = dayOfWeek start
wds' = L.sort $ (\x -> diff (fromWeekday x) startDay) <$> L.nub wds
diff a b = fromIntegral $ mod (fromEnum a - fromEnum b) 7
-- ASSUME days is a sorted list
foldDays
:: MonadInsertError m
=> (Day -> Day -> m a)
-> Day
-> [Day]
-> m [a]
foldDays f start days = case NE.nonEmpty days of
Nothing -> return []
Just ds
| any (start >) ds ->
throwError $
InsertException [PeriodError start $ minimum ds]
| otherwise ->
combineErrors $
snd $
L.mapAccumL (\prevDay day -> (day, f prevDay day)) start days
isIncomeAcnt :: (MonadInsertError m, MonadFinance m) => AcntID -> m ()
isIncomeAcnt = checkAcntType IncomeT
isNotIncomeAcnt :: (MonadInsertError m, MonadFinance m) => AcntID -> m ()
isNotIncomeAcnt = checkAcntTypes (AssetT :| [EquityT, ExpenseT, LiabilityT])
checkAcntType
:: (MonadInsertError m, MonadFinance m)
=> AcntType
-> AcntID
-> m ()
checkAcntType t = checkAcntTypes (t :| [])
checkAcntTypes
:: (MonadInsertError m, MonadFinance m)
=> NE.NonEmpty AcntType
-> AcntID
-> m ()
checkAcntTypes ts i = void $ go =<< lookupAccountType i
where
go t
| t `L.elem` ts = return i
| otherwise = throwError $ InsertException [AccountError i ts]
flattenAllo :: SingleAllocation v -> [FlatAllocation v]
flattenAllo Allocation {alloAmts, alloCur, alloTo} = fmap go alloAmts
where
go Amount {amtValue, amtDesc} =
FlatAllocation
{ faCur = alloCur
, faTo = alloTo
, faValue = amtValue
, faDesc = amtDesc
}
-- ASSUME allocations are sorted
selectAllos :: Day -> DaySpanAllocation v -> [FlatAllocation v]
selectAllos day Allocation {alloAmts, alloCur, alloTo} =
go <$> filter ((`inDaySpan` day) . amtWhen) alloAmts
where
go Amount {amtValue, amtDesc} =
FlatAllocation
{ faCur = alloCur
, faTo = alloTo
, faValue = amtValue
, faDesc = amtDesc
}
allo2Trans
:: (MonadInsertError m, MonadFinance m)
=> TxCommit
-> Day
-> TaggedAcnt
-> FlatAllocation Rational
-> m (Tx TxCommit)
allo2Trans meta day from FlatAllocation {faValue, faTo, faDesc, faCur} = do
-- TODO double here?
p <- entryPair from faTo faCur faDesc (fromRational faValue)
return
Tx
{ txCommit = meta
, txDate = day
, txPrimary = p
, txOther = []
, txDescr = faDesc
}
allocatePre
:: Natural
-> Rational
-> [FlatAllocation PretaxValue]
-> (M.Map T.Text Rational, [FlatAllocation Rational])
allocatePre precision gross = L.mapAccumR go M.empty
where
go m f@FlatAllocation {faValue} =
let c = preCategory faValue
p = preValue faValue
v =
if prePercent faValue
then (roundPrecision 3 p / 100) * gross
else roundPrecision precision p
in (mapAdd_ c v m, f {faValue = v})
allocateTax
:: Natural
-> Rational
-> M.Map T.Text Rational
-> PeriodScaler
-> [FlatAllocation TaxValue]
-> [FlatAllocation Rational]
allocateTax precision gross preDeds f = fmap (fmap go)
where
go TaxValue {tvCategories, tvMethod} =
let agi = gross - sum (mapMaybe (`M.lookup` preDeds) tvCategories)
in case tvMethod of
TMPercent p ->
roundPrecision precision $
fromRational $
roundPrecision 3 p / 100 * agi
TMBracket TaxProgression {tpDeductible, tpBrackets} ->
let taxDed = roundPrecision precision $ f precision tpDeductible
in foldBracket f precision (agi - taxDed) tpBrackets
-- | Compute effective tax percentage of a bracket
-- The algorithm can be thought of in three phases:
-- 1. Find the highest tax bracket by looping backward until the AGI is less
-- than the bracket limit
-- 2. Computing the tax in the top bracket by subtracting the AGI from the
-- bracket limit and multiplying by the tax percentage.
-- 3. Adding all lower brackets, which are just the limit of the bracket less
-- the amount of the lower bracket times the percentage.
--
-- In reality, this can all be done with one loop, but it isn't clear these
-- three steps are implemented from this alone.
foldBracket :: PeriodScaler -> Natural -> Rational -> [TaxBracket] -> Rational
foldBracket f precision agi bs = fst $ foldr go (0, agi) $ L.sortOn tbLowerLimit bs
where
go TaxBracket {tbLowerLimit, tbPercent} a@(acc, remain) =
let l = roundPrecision precision $ f precision tbLowerLimit
p = roundPrecision 3 tbPercent / 100
in if remain >= l then (acc + p * (remain - l), l) else a
allocatePost
:: Natural
-> Rational
-> [FlatAllocation PosttaxValue]
-> [FlatAllocation Rational]
allocatePost precision aftertax = fmap (fmap go)
where
go PosttaxValue {postValue, postPercent} =
let v = postValue
in if postPercent
then aftertax * roundPrecision 3 v / 100
else roundPrecision precision v
--------------------------------------------------------------------------------
-- Standalone Transfer
expandTransfers
:: (MonadInsertError m, MonadFinance m)
=> CommitR
-> T.Text
-> Maybe Interval
-> [BudgetTransfer]
-> m [Tx TxCommit]
expandTransfers key name localInterval ts = do
txs <-
fmap (L.sortOn txDate . concat) $
combineErrors $
fmap (expandTransfer key name) ts
case localInterval of
Nothing -> return txs
Just i -> do
bounds <- liftExcept $ resolveDaySpan i
return $ filter (inDaySpan bounds . txDate) txs
expandTransfer
:: (MonadInsertError m, MonadFinance m)
=> CommitR
-> T.Text
-> BudgetTransfer
-> m [Tx TxCommit]
expandTransfer key name Transfer {transAmounts, transTo, transCurrency, transFrom} =
concat <$> mapErrors go transAmounts
where
go
Amount
{ amtWhen = pat
, amtValue = TransferValue {tvVal = v, tvType = t}
, amtDesc = desc
} =
withDates pat $ \day -> do
let meta = BudgetCommit key name
p <- entryPair_ (\_ x -> EntryValue t $ toRational x) transFrom transTo transCurrency desc v
return
Tx
{ txCommit = meta
, txDate = day
, txPrimary = p
, txOther = []
, txDescr = desc
}
withDates
:: (MonadFinance m, MonadInsertError m)
=> DatePat
-> (Day -> m a)
-> m [a]
withDates dp f = do
bounds <- askDBState kmBudgetInterval
days <- liftExcept $ expandDatePat bounds dp
combineErrors $ fmap f days
--------------------------------------------------------------------------------
-- shadow transfers
-- TODO this is going to be O(n*m), which might be a problem?
addShadowTransfers
:: (MonadInsertError m, MonadFinance m)
=> [ShadowTransfer]
-> [Tx TxCommit]
-> m [Tx TxCommit]
addShadowTransfers ms = mapErrors go
where
go tx = do
es <- catMaybes <$> mapErrors (fromShadow tx) ms
return $ tx {txOther = es}
fromShadow
:: (MonadInsertError m, MonadFinance m)
=> Tx TxCommit
-> ShadowTransfer
-> m (Maybe (EntrySet AcntID CurrencyPrec TagID Rational (Either Double (EntryValue Rational))))
fromShadow tx ShadowTransfer {stFrom, stTo, stDesc, stRatio, stCurrency, stMatch} = do
res <- liftExcept $ shadowMatches stMatch tx
es <- entryPair_ (\_ v -> Left v) stFrom stTo stCurrency stDesc stRatio
return $ if not res then Nothing else Just es
shadowMatches :: TransferMatcher -> Tx TxCommit -> InsertExcept Bool
shadowMatches TransferMatcher {tmFrom, tmTo, tmDate} Tx {txPrimary, txDate} = do
-- NOTE this will only match against the primary entry set since those
-- are what are guaranteed to exist from a transfer
-- valRes <- valMatches tmVal $ esTotalValue $ txPrimary
return $
memberMaybe (eAcnt $ hesPrimary $ esFrom txPrimary) tmFrom
&& memberMaybe (eAcnt $ hesPrimary $ esTo txPrimary) tmTo
&& maybe True (`dateMatches` txDate) tmDate
where
-- && valRes
memberMaybe x AcntSet {asList, asInclude} =
(if asInclude then id else not) $ x `elem` asList
--------------------------------------------------------------------------------
-- random
alloAcnt :: Allocation w v -> AcntID
alloAcnt = taAcnt . alloTo
data UnbalancedValue = UnbalancedValue
{ cvType :: !TransferType
, cvValue :: !Rational
}
deriving (Show)
type IntAllocations =
( [DaySpanAllocation PretaxValue]
, [DaySpanAllocation TaxValue]
, [DaySpanAllocation PosttaxValue]
)
type DaySpanAllocation = Allocation DaySpan
type PeriodScaler = Natural -> Double -> Double
data FlatAllocation v = FlatAllocation
{ faValue :: !v
, faDesc :: !T.Text
, faTo :: !TaggedAcnt
, faCur :: !CurID
}
deriving (Functor, Show)