pwncash/lib/Internal/Database.hs

601 lines
19 KiB
Haskell

module Internal.Database
( runDB
, nukeTables
, updateHashes
, updateDBState
, getDBState
, tree2Records
, flattenAcntRoot
, paths2IDs
, mkPool
, whenHash0
, whenHash
, whenHash_
, eitherHash
, insertEntry
, resolveEntry
, readUpdates
)
where
import Conduit
import Control.Monad.Except
import Control.Monad.Logger
import Data.Hashable
import Database.Esqueleto.Experimental ((:&) (..), (==.), (^.))
import qualified Database.Esqueleto.Experimental as E
import Database.Esqueleto.Internal.Internal (SqlSelect)
import Database.Persist.Monad
import Database.Persist.Sqlite hiding
( delete
, deleteWhere
, insert
, insertKey
, insert_
, runMigration
, (==.)
, (||.)
)
import GHC.Err
import Internal.Types.Main
import Internal.Utils
import RIO hiding (LogFunc, isNothing, on, (^.))
import RIO.List ((\\))
import qualified RIO.List as L
import qualified RIO.Map as M
import qualified RIO.NonEmpty as N
import qualified RIO.Text as T
import qualified RIO.Vector as V
runDB
:: MonadUnliftIO m
=> SqlConfig
-> SqlQueryT (NoLoggingT m) a
-> m a
runDB c more =
runNoLoggingT $ do
pool <- mkPool c
runSqlQueryT pool $ do
_ <- lift askLoggerIO
runMigration migrateAll
more
mkPool :: (MonadLoggerIO m, MonadUnliftIO m) => SqlConfig -> m ConnectionPool
mkPool c = case c of
Sqlite p -> createSqlitePool p 10
-- conn <- open p
-- wrapConnection conn logfn
Postgres -> error "postgres not implemented"
nukeTables :: MonadSqlQuery m => m ()
nukeTables = do
deleteWhere ([] :: [Filter CommitR])
deleteWhere ([] :: [Filter CurrencyR])
deleteWhere ([] :: [Filter AccountR])
deleteWhere ([] :: [Filter TransactionR])
-- showBalances :: MonadUnliftIO m => SqlPersistT m ()
-- showBalances = do
-- xs <- select $ do
-- (accounts :& splits :& txs) <-
-- from
-- $ table @AccountR
-- `innerJoin` table @SplitR
-- `on` (\(a :& s) -> a ^. AccountRId ==. s ^. SplitRAccount)
-- `innerJoin` table @TransactionR
-- `on` (\(_ :& s :& t) -> s ^. SplitRTransaction ==. t ^. TransactionRId)
-- where_ $
-- isNothing (txs ^. TransactionRBucket)
-- &&. ( (accounts ^. AccountRFullpath `like` val "asset" ++. (%))
-- ||. (accounts ^. AccountRFullpath `like` val "liability" ++. (%))
-- )
-- groupBy (accounts ^. AccountRFullpath, accounts ^. AccountRName)
-- return
-- ( accounts ^. AccountRFullpath
-- , accounts ^. AccountRName
-- , sum_ $ splits ^. SplitRValue
-- )
-- -- TODO super stetchy table printing thingy
-- liftIO $ do
-- putStrLn $ T.unpack $ fmt "Account" "Balance"
-- putStrLn $ T.unpack $ fmt (T.replicate 60 "-") (T.replicate 15 "-")
-- mapM_ (putStrLn . T.unpack . fmtBalance) xs
-- where
-- fmtBalance (path, name, bal) = fmt (toFullPath path name) (toBal bal)
-- fmt a b = T.unwords ["| ", pad 60 a, " | ", pad 15 b, " |"]
-- pad n xs = T.append xs $ T.replicate (n - T.length xs) " "
-- toFullPath path name = T.unwords [unValue @T.Text path, "/", unValue @T.Text name]
-- toBal = maybe "???" (fmtRational 2) . unValue
hashConfig :: Config -> [Int]
hashConfig
Config_
{ budget = bs
, statements = ss
} = (hash <$> bs) ++ (hash <$> ms) ++ (hash <$> ps)
where
(ms, ps) = partitionEithers $ fmap go ss
go (HistTransfer x) = Left x
go (HistStatement x) = Right x
setDiff :: Eq a => [a] -> [a] -> ([a], [a])
-- setDiff = setDiff' (==)
setDiff as bs = (as \\ bs, bs \\ as)
-- setDiff' :: Eq a => (a -> b -> Bool) -> [a] -> [b] -> ([a], [b])
-- setDiff' f = go []
-- where
-- go inA [] bs = (inA, bs)
-- go inA as [] = (as ++ inA, [])
-- go inA (a:as) bs = case inB a bs of
-- Just bs' -> go inA as bs'
-- Nothing -> go (a:inA) as bs
-- inB _ [] = Nothing
-- inB a (b:bs)
-- | f a b = Just bs
-- | otherwise = inB a bs
getDBHashes :: MonadSqlQuery m => m [Int]
getDBHashes = fmap (commitRHash . entityVal) <$> dumpTbl
nukeDBHash :: MonadSqlQuery m => Int -> m ()
nukeDBHash h = deleteE $ do
c <- E.from E.table
E.where_ (c ^. CommitRHash ==. E.val h)
nukeDBHashes :: MonadSqlQuery m => [Int] -> m ()
nukeDBHashes = mapM_ nukeDBHash
getConfigHashes :: MonadSqlQuery m => Config -> m ([Int], [Int])
getConfigHashes c = do
let ch = hashConfig c
dh <- getDBHashes
return $ setDiff dh ch
dumpTbl :: (MonadSqlQuery m, PersistEntity r) => m [Entity r]
dumpTbl = selectE $ E.from E.table
deleteAccount :: MonadSqlQuery m => Entity AccountR -> m ()
deleteAccount e = deleteE $ do
c <- E.from $ E.table @AccountR
E.where_ (c ^. AccountRId ==. E.val k)
where
k = entityKey e
deleteCurrency :: MonadSqlQuery m => Entity CurrencyR -> m ()
deleteCurrency e = deleteE $ do
c <- E.from $ E.table @CurrencyR
E.where_ (c ^. CurrencyRId ==. E.val k)
where
k = entityKey e
deleteTag :: MonadSqlQuery m => Entity TagR -> m ()
deleteTag e = deleteE $ do
c <- E.from $ E.table @TagR
E.where_ (c ^. TagRId ==. E.val k)
where
k = entityKey e
-- TODO slip-n-slide code...
insertFull
:: (PersistRecordBackend r SqlBackend, Typeable r, MonadSqlQuery m)
=> Entity r
-> m ()
insertFull (Entity k v) = insertKey k v
currency2Record :: Currency -> Entity CurrencyR
currency2Record c@Currency {curSymbol, curFullname, curPrecision} =
Entity (toKey c) $ CurrencyR curSymbol curFullname (fromIntegral curPrecision)
currencyMap :: [Entity CurrencyR] -> CurrencyMap
currencyMap =
M.fromList
. fmap
( \e ->
( currencyRSymbol $ entityVal e
, CurrencyPrec (entityKey e) $ fromIntegral $ currencyRPrecision $ entityVal e
)
)
toKey :: (ToBackendKey SqlBackend b, Hashable a) => a -> Key b
toKey = toSqlKey . fromIntegral . hash
tree2Entity :: AcntType -> [T.Text] -> T.Text -> T.Text -> Entity AccountR
tree2Entity t parents name des =
Entity (toSqlKey $ fromIntegral h) $
AccountR name (toPath parents) des
where
p = AcntPath t (reverse (name : parents))
h = hash p
toPath = T.intercalate "/" . (atName t :) . reverse
tree2Records
:: AcntType
-> AccountTree
-> ([Entity AccountR], [AccountPathR], [(AcntPath, (AccountRId, AcntSign, AcntType))])
tree2Records t = go []
where
go ps (Placeholder d n cs) =
let e = tree2Entity t (fmap snd ps) n d
k = entityKey e
(as, aps, ms) = L.unzip3 $ fmap (go ((k, n) : ps)) cs
a0 = acnt k n (fmap snd ps) d
paths = expand k $ fmap fst ps
in (a0 : concat as, paths ++ concat aps, concat ms)
go ps (Account d n) =
let e = tree2Entity t (fmap snd ps) n d
k = entityKey e
in ( [acnt k n (fmap snd ps) d]
, expand k $ fmap fst ps
, [(AcntPath t $ reverse $ n : fmap snd ps, (k, sign, t))]
)
toPath = T.intercalate "/" . (atName t :) . reverse
acnt k n ps = Entity k . AccountR n (toPath ps)
expand h0 hs = (\(h, d) -> AccountPathR h h0 d) <$> zip (h0 : hs) [0 ..]
sign = accountSign t
paths2IDs :: [(AcntPath, a)] -> [(AcntID, a)]
paths2IDs =
uncurry zip
. first trimNames
. L.unzip
. L.sortOn fst
. fmap (first pathList)
where
pathList (AcntPath t []) = atName t :| []
pathList (AcntPath t ns) = N.reverse $ atName t :| ns
-- none of these errors should fire assuming that input is sorted and unique
trimNames :: [N.NonEmpty T.Text] -> [AcntID]
trimNames = fmap (T.intercalate "_" . reverse) . trimAll 0
where
trimAll _ [] = []
trimAll i (y : ys) = case L.foldl' (matchPre i) (y, [], []) ys of
(a, [], bs) -> reverse $ trim i a : bs
(a, as, bs) -> reverse bs ++ trimAll (i + 1) (reverse $ a : as)
matchPre i (y, ys, old) new = case (y !? i, new !? i) of
(Nothing, Just _) ->
case ys of
[] -> (new, [], trim i y : old)
_ -> err "unsorted input"
(Just _, Nothing) -> err "unsorted input"
(Nothing, Nothing) -> err "duplicated inputs"
(Just a, Just b)
| a == b -> (new, y : ys, old)
| otherwise ->
let next = case ys of
[] -> [trim i y]
_ -> trimAll (i + 1) (reverse $ y : ys)
in (new, [], reverse next ++ old)
trim i = N.take (i + 1)
err msg = errorWithoutStackTrace $ "Import.Database.Ops.hs: " ++ msg
(!?) :: N.NonEmpty a -> Int -> Maybe a
xs !? n
| n < 0 = Nothing
-- Definition adapted from GHC.List
| otherwise =
foldr
( \x r k -> case k of
0 -> Just x
_ -> r (k - 1)
)
(const Nothing)
xs
n
flattenAcntRoot :: AccountRoot -> [(AcntType, AccountTree)]
flattenAcntRoot AccountRoot_ {arIncome, arExpenses, arLiabilities, arAssets, arEquity} =
((IncomeT,) <$> arIncome)
++ ((ExpenseT,) <$> arExpenses)
++ ((LiabilityT,) <$> arLiabilities)
++ ((AssetT,) <$> arAssets)
++ ((EquityT,) <$> arEquity)
indexAcntRoot :: AccountRoot -> ([Entity AccountR], [AccountPathR], AccountMap)
indexAcntRoot r =
( concat ars
, concat aprs
, M.fromList $ paths2IDs $ concat ms
)
where
(ars, aprs, ms) = L.unzip3 $ uncurry tree2Records <$> flattenAcntRoot r
getDBState
:: (MonadInsertError m, MonadSqlQuery m)
=> Config
-> m (DBState, DBUpdates)
getDBState c = do
(del, new) <- getConfigHashes c
combineError bi si $ \b s ->
( DBState
{ kmCurrency = currencyMap cs
, kmAccount = am
, kmBudgetInterval = b
, kmStatementInterval = s
, kmTag = tagMap ts
, kmNewCommits = new
}
, DBUpdates
{ duOldCommits = del
, duNewTagIds = ts
, duNewAcntPaths = paths
, duNewAcntIds = acnts
, duNewCurrencyIds = cs
}
)
where
bi = liftExcept $ resolveDaySpan $ budgetInterval $ global c
si = liftExcept $ resolveDaySpan $ statementInterval $ global c
(acnts, paths, am) = indexAcntRoot $ accounts c
cs = currency2Record <$> currencies c
ts = toRecord <$> tags c
toRecord t@Tag {tagID, tagDesc} = Entity (toKey t) $ TagR tagID tagDesc
tagMap = M.fromList . fmap (\e -> (tagRSymbol $ entityVal e, entityKey e))
updateHashes :: (MonadSqlQuery m) => DBUpdates -> m ()
updateHashes DBUpdates {duOldCommits} = nukeDBHashes duOldCommits
updateTags :: (MonadFinance m, MonadSqlQuery m) => DBUpdates -> m ()
updateTags DBUpdates {duNewTagIds} = do
tags' <- selectE $ E.from $ E.table @TagR
let (toIns, toDel) = setDiff duNewTagIds tags'
mapM_ deleteTag toDel
mapM_ insertFull toIns
updateAccounts :: (MonadFinance m, MonadSqlQuery m) => DBUpdates -> m ()
updateAccounts DBUpdates {duNewAcntIds, duNewAcntPaths} = do
acnts' <- dumpTbl
let (toIns, toDel) = setDiff duNewAcntIds acnts'
deleteWhere ([] :: [Filter AccountPathR])
mapM_ deleteAccount toDel
mapM_ insertFull toIns
mapM_ insert duNewAcntPaths
updateCurrencies :: (MonadFinance m, MonadSqlQuery m) => DBUpdates -> m ()
updateCurrencies DBUpdates {duNewCurrencyIds} = do
curs' <- selectE $ E.from $ E.table @CurrencyR
let (toIns, toDel) = setDiff duNewCurrencyIds curs'
mapM_ deleteCurrency toDel
mapM_ insertFull toIns
updateDBState :: (MonadFinance m, MonadSqlQuery m) => DBUpdates -> m ()
updateDBState u = do
updateHashes u
updateTags u
updateAccounts u
updateCurrencies u
deleteE :: (MonadSqlQuery m) => E.SqlQuery () -> m ()
deleteE q = unsafeLiftSql "esqueleto-delete" (E.delete q)
selectE :: (MonadSqlQuery m, SqlSelect a r) => E.SqlQuery a -> m [r]
selectE q = unsafeLiftSql "esqueleto-select" (E.select q)
whenHash
:: (Hashable a, MonadFinance m, MonadSqlQuery m)
=> ConfigType
-> a
-> b
-> (CommitRId -> m b)
-> m b
whenHash t o def f = do
let h = hash o
hs <- askDBState kmNewCommits
if h `elem` hs then f =<< insert (CommitR h t) else return def
whenHash0
:: (Hashable a, MonadFinance m)
=> ConfigType
-> a
-> b
-> (CommitR -> m b)
-> m b
whenHash0 t o def f = do
let h = hash o
hs <- askDBState kmNewCommits
if h `elem` hs then f (CommitR h t) else return def
eitherHash
:: (Hashable a, MonadFinance m)
=> ConfigType
-> a
-> (CommitR -> m b)
-> (CommitR -> m c)
-> m (Either b c)
eitherHash t o f g = do
let h = hash o
let c = CommitR h t
hs <- askDBState kmNewCommits
if h `elem` hs then Left <$> f c else Right <$> g c
whenHash_
:: (Hashable a, MonadFinance m)
=> ConfigType
-> a
-> m b
-> m (Maybe (CommitR, b))
whenHash_ t o f = do
let h = hash o
let c = CommitR h t
hs <- askDBState kmNewCommits
if h `elem` hs then Just . (c,) <$> f else return Nothing
insertEntry :: MonadSqlQuery m => TransactionRId -> KeyEntry -> m EntryRId
insertEntry
t
InsertEntry
{ feEntry = Entry {eValue, eTags, eAcnt, eComment}
, feCurrency
, feIndex
, feDeferred
} =
do
k <- insert $ EntryR t feCurrency eAcnt eComment eValue feIndex cval ctype deflink
mapM_ (insert_ . TagRelationR k) eTags
return k
where
(cval, ctype, deflink) = case feDeferred of
(Just (EntryLinked index scale)) -> (Just scale, Nothing, Just $ fromIntegral index)
(Just (EntryBalance target)) -> (Just target, Just TBalance, Nothing)
(Just (EntryPercent target)) -> (Just target, Just TPercent, Nothing)
Nothing -> (Nothing, Just TFixed, Nothing)
resolveEntry :: (MonadInsertError m, MonadFinance m) => BalEntry -> m KeyEntry
resolveEntry s@InsertEntry {feEntry = e@Entry {eValue, eTags, eAcnt}, feCurrency} = do
let aRes = lookupAccountKey eAcnt
let cRes = lookupCurrencyKey feCurrency
let sRes = lookupAccountSign eAcnt
let tagRes = combineErrors $ fmap lookupTag eTags
-- TODO correct sign here?
-- TODO lenses would be nice here
combineError (combineError3 aRes cRes sRes (,,)) tagRes $
\(aid, cid, sign) tags ->
s
{ feCurrency = cid
, feEntry = e {eAcnt = aid, eValue = fromIntegral (sign2Int sign) * eValue, eTags = tags}
}
readUpdates
:: (MonadInsertError m, MonadSqlQuery m)
=> [Int]
-> m ([ReadEntry], [UpdateEntrySet])
readUpdates hashes = do
xs <- selectE $ do
(commits :& txs :& entries) <-
E.from
$ E.table @CommitR
`E.innerJoin` E.table @TransactionR
`E.on` (\(c :& t) -> c ^. CommitRId ==. t ^. TransactionRCommit)
`E.innerJoin` E.table @EntryR
`E.on` (\(_ :& t :& e) -> t ^. TransactionRId ==. e ^. EntryRTransaction)
E.where_ $ commits ^. CommitRHash `E.in_` E.valList hashes
return
( txs ^. TransactionRDeferred
, txs ^. TransactionRDate
, entries
)
let (toUpdate, toRead) =
bimap unpack (fmap makeRE . unpack) $
L.partition (\(d, _, _) -> E.unValue d) xs
toUpdate' <-
liftExcept $
mapErrors makeUES $
second (fmap snd) <$> groupWith uGroup toUpdate
return (toRead, toUpdate')
where
unpack = fmap (\(_, d, e) -> (E.unValue d, (entityKey e, entityVal e)))
uGroup (day, (_, e)) = (day, entryRCurrency e, entryRTransaction e)
makeUES ((day, cur, _), es) = do
let (froms, tos) =
L.partition ((< 0) . entryRIndex . snd) $
L.sortOn (entryRIndex . snd) es
let tot = sum $ fmap (entryRValue . snd) froms
(from0, fromRO, fromUnk, fromVec) <- splitFrom $ reverse froms
(to0, toRO, toUnk, toLink0, toLinkN) <- splitTo fromVec tos
return
UpdateEntrySet
{ utDate = day
, utCurrency = cur
, utFrom0 = from0
, utTo0 = to0
, utFromRO = fromRO
, utToRO = toRO
, utToUnkLink0 = toLink0
, utPairs = toLinkN
, utFromUnk = fromUnk
, utToUnk = toUnk
, utTotalValue = tot
}
makeRE (d, (_, e)) =
ReadEntry
{ reDate = d
, reCurrency = entryRCurrency e
, reAcnt = entryRAccount e
, reValue = entryRValue e
}
splitFrom
:: [(EntryRId, EntryR)]
-> InsertExcept (UEBlank, [UE_RO], [UEUnk], Vector (Maybe UEUnk))
splitFrom from = do
-- ASSUME entries are sorted by index
(primary, rest) <- case from of
((i, e) : xs) -> return (makeUnkUE i e, xs)
_ -> throwError $ InsertException undefined
rest' <- mapErrors splitDeferredValue rest
let idxVec = V.fromList $ fmap (either (const Nothing) Just) rest'
let (ro, toBal) = partitionEithers rest'
return (primary, ro, toBal, idxVec)
splitTo
:: Vector (Maybe UEUnk)
-> [(EntryRId, EntryR)]
-> InsertExcept
( UEBlank
, [UE_RO]
, [UEUnk]
, [UELink]
, [(UEUnk, [UELink])]
)
splitTo froms tos = do
-- How to split the credit side of the database transaction in 1024 easy
-- steps:
--
-- 1. ASSUME the entries are sorted by index. Isolate the first as the
-- primary and puke in user's face if list is empty (which it should never
-- be)
(primary, rest) <- case tos of
((i, e) : xs) -> return (makeUnkUE i e, xs)
_ -> throwError $ InsertException undefined
-- 1. Split the entries based on if they have a link
let (unlinked, linked) = partitionEithers $ fmap splitLinked rest
-- 2. Split unlinked based on if they have a balance target
let unlinkedRes = partitionEithers <$> mapErrors splitDeferredValue unlinked
-- 3. Split paired entries by link == 0 (which are special) or link > 0
let (paired0, pairedN) = second (groupKey id) $ L.partition ((== 0) . fst) linked
let paired0Res = mapErrors (makeLinkUnk . snd) paired0
-- 4. Group linked entries (which now have links > 0) according to the debit
-- entry to which they are linked. If the debit entry cannot be found or
-- if the linked entry has no scale, blow up in user's face. If the
-- debit entry is read-only (signified by Nothing in the 'from' array)
-- then consider the linked entry as another credit read-only entry
let pairedRes = partitionEithers <$> mapErrors splitPaired pairedN
combineError3 unlinkedRes paired0Res pairedRes $
\(ro, toBal) paired0' (pairedUnk, pairedRO) ->
(primary, ro ++ concat pairedRO, toBal, paired0', pairedUnk)
where
splitLinked t@(_, e) = maybe (Left t) (Right . (,t)) $ entryRCachedLink e
splitPaired (lnk, ts) = case froms V.!? (lnk - 1) of
Just (Just f) -> Left . (f,) <$> mapErrors makeLinkUnk ts
Just Nothing -> return $ Right $ makeRoUE . snd <$> ts
Nothing -> throwError $ InsertException undefined
makeLinkUnk (k, e) =
maybe
(throwError $ InsertException undefined)
(return . makeUE k e . LinkScale)
$ entryRCachedValue e
splitDeferredValue :: (EntryRId, EntryR) -> InsertExcept (Either UE_RO UEUnk)
splitDeferredValue (k, e) = case (entryRCachedValue e, entryRCachedType e) of
(Nothing, Just TFixed) -> return $ Left $ makeRoUE e
(Just v, Just TBalance) -> go EVBalance v
(Just v, Just TPercent) -> go EVPercent v
_ -> throwError $ InsertException undefined
where
go c = return . Right . fmap c . makeUE k e
makeUE :: i -> EntryR -> v -> UpdateEntry i v
makeUE k e v = UpdateEntry k (entryRAccount e) v (entryRIndex e)
makeRoUE :: EntryR -> UpdateEntry () StaticValue
makeRoUE e = makeUE () e $ StaticValue (entryRValue e)
makeUnkUE :: EntryRId -> EntryR -> UpdateEntry EntryRId ()
makeUnkUE k e = makeUE k e ()