phd_thesis/code/microcarrier_diffusion_wash...

180 lines
5.6 KiB
Mathematica
Raw Normal View History

2021-08-03 19:01:31 -04:00
function microcarrier_diffusion_washing()
% initial/reaction volume for carriers (cm^3)
V_b0 = 1;
disp(['###Biotin washing###', sprintf('\n')])
n_biotin = 10; % nmol biotin remaining after attachment
D_biotin = 5.0e-6; % diffusion coeff (cm^2/s)
carrier_stages(V_b0, 3, n_biotin, D_biotin)
disp(['###Streptavidin washing###', sprintf('\n')])
m_stp = 15; % ug stp remaining after attachment
n_stp = m_stp / 55000 * 1000;
D_stp = 6.2e-7; % diffusion coeff (cm^2/s)
carrier_stages(V_b0, 2, n_stp, D_stp)
disp(['###Antibody washing###', sprintf('\n')])
m_Ab = 1; % ug Ab added
n_Ab = m_Ab / 150000 * 1000;
D_Ab = 4.8e-7; % diffusion coeff (cm^2/s)
carrier_stages(V_b0, 2, n_Ab, D_Ab)
end
function carrier_stages(V_b0, stages, n_L, D_L)
% initial concentration of L (nM)
C_L = n_L / (V_b0 / 1000);
% max fill for 15 ml conical tube is about 10ml at vortex speed = 6 without
% splashing the medium (PBS) onto the cap/rim and possibly compromising
% sterility and losing carriers
%
% wash volume, fill up to this to let biotin out of carriers (cm^3)
V_wash = 10;
% dilution volume, fill up to this to reduce total biotin in solution (cm^3)
V_dilution = 15;
C_L_bulk = C_L;
for i = 1:stages
disp([sprintf('\n'), '---Stage ', num2str(i), '---', sprintf('\n')])
[C_L, n_L_carrier, n_L_bulk] = carrier_diffusion_out(V_b0, ...
V_wash, C_L, C_L_bulk, D_L);
C_L_bulk = C_L*V_wash / V_dilution;
n_L_bulk = n_L_bulk * V_b0 / V_dilution;
end
disp([sprintf('\n'), 'final bulk amount = ' , num2str(n_L_bulk), ' nmol']);
disp(['final total amount = ', num2str(n_L_carrier + n_L_bulk), ' nmol']);
disp(['overall reduction = ', ...
num2str((1 - (n_L_carrier + n_L_bulk) / n_L) * 100), ' %', ...
sprintf('\n')]);
end
function [C_carrier_ave_final, n_Lc_f, n_Lb_f] = ...
carrier_diffusion_out(V_b0, V_bf, C_Lc_pw, C_Lb_pw, D_LW)
% V_b0: prewash volume of bulk solution (cm^3)
% V_bf: wash volume of bulk solution (cm^3)
% C_Lc_pw: prewash concentration of ligand in carriers (pmol/cm^3, nM)
% C_Lb_pw: prewash concentration of ligand in bulk (pmol/cm^3, nM)
% D_LW: ligand diffusion coefficient in water (cm^2/s)
% number of microcarriers in bulk volume
n = 16000;
% geometric diffusion factor of microcarriers
geometry = 0.190;
% microcarrier radius (cm)
R = 0.01275;
% apparent ligand diffusion coeff in microcarrier (cm^2/min)
D_L_app = D_LW * geometry * 60;
% void fraction
void = 0.95;
% volume occupied by carriers (cm^3)
V_c = void * 4 / 3 * pi * R^3 * n;
% prewash amount in carriers (nmol)
n_Lc_pw = (V_c / 1000) * C_Lc_pw;
% prewash amount outside carriers (nmol)
n_Lb_pw = ((V_b0 - V_c) / 1000) * C_Lb_pw;
t_0 = 0; % initial time (min)
t_f = 30; % final time (min)
C_Lb0 = n_Lb_pw / ((V_bf - V_c) / 1e3); % initial conc. in bulk (nM)
% final conditions (after long time)
% we use this calculate an average bulk concentration to create a constant
% boundary in the BVP, otherwise we have a to solve a free BVP,
% which involves sacrificing a kitten...
n_L_trans = (V_bf * n_Lc_pw - V_c * n_Lb_pw) / (V_c + V_bf);
% final concentration of ligand in bulk solution (pmol/cm^3, nM)
C_Lbf = (n_Lb_pw + n_L_trans) / (V_bf / 1e3);
disp(['initial bulk concentration = ', num2str(C_Lb0), ' nM']);
disp(['final bulk concentration = ', num2str(C_Lbf), ' nM']);
disp(['bulk percent change = ', ...
num2str((1 - C_Lb0 / C_Lbf) * 100), '%']);
disp(['initial carrier concentration = ', num2str(C_Lc_pw), ' nM']);
disp(['initial carrier amount = ', num2str(n_Lc_pw), ' nmol']);
disp(['initial bulk amount = ', ...
num2str(n_Lb_pw), ' nmol', sprintf('\n')]);
m = 2; % spherical
r = linspace(0, R, 50);
t_f = 1;
tolerance = 0.1; % iterate until center and outside conc are within this
increment = 1; % length of time increments (min)
diff = 1000000; % init to some huge number
while diff > tolerance
t = linspace(t_0, t_f, 50);
Y = pdepe(m,@pde,@init,@bound,r,t);
C = Y(:,:,1);
% final concentration in center of carrier at final time
C_f_center = C(end,1);
% test to see how far off the center is from bulk
diff = C_f_center / C_Lbf - 1;
t_f = t_f + increment;
end
% average final concentration of carriers
C_carrier_ave_final = (C_f_center + C_Lbf) / 2;
% nmol still remaining in carriers
n_Lc_f = C_carrier_ave_final * (V_c / 1000);
% final nmol in bulk
n_Lb_f = n_Lb_pw + (n_Lc_pw - n_Lc_f);
% percent nmol of ligand removed from carriers
perc_removed = (1 - n_Lc_f / n_Lc_pw) * 100;
% amount actually transferred over theoretical
efficiency = (n_Lc_pw - n_Lc_f) / n_L_trans * 100;
disp(['final time to equilibrium = ', num2str(t_f), ' min']);
disp(['Total removed from carriers = ', num2str(n_Lc_pw - n_Lc_f), ' nmol']);
disp(['Total remaining in carriers = ', num2str(n_Lc_f), ' nmol']);
disp(['Total remaining in bulk = ', num2str(n_Lb_f), ' nmol']);
disp(['Percent removed from carriers = ', num2str(perc_removed), ' %']);
function [c, f, s] = pde(r, t, c, DcDr)
c = 1;
f = D_L_app * DcDr;
s = 0;
end
function u0 = init(r)
u0 = C_Lc_pw;
end
function [pl,ql,pr,qr] = bound(rl,cl,rr,cr,t)
pl = 0;
ql = 1;
% assume that the concentration boundary
% is the average of the initial and
% theoretical final concentration in bulk
pr = cr - (C_Lbf + C_Lbf)/2;
qr = 0;
end
end