2021-07-22 11:30:00 -04:00
|
|
|
|
% \documentclass[twocolumn]{article}
|
|
|
|
|
\documentclass{report}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
% TODO I want to keep figures in each subsection, which this doesn't do
|
|
|
|
|
\usepackage[section]{placeins}
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\usepackage[top=1in,left=1.5in,right=1in,bottom=1in]{geometry}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\usepackage{siunitx}
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\usepackage{multicol}
|
|
|
|
|
\setlength{\columnsep}{1cm}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\usepackage[acronym]{glossaries}
|
|
|
|
|
\usepackage[T1]{fontenc}
|
|
|
|
|
\usepackage{enumitem}
|
|
|
|
|
\usepackage{titlesec}
|
|
|
|
|
\usepackage{titlecaps}
|
|
|
|
|
\usepackage{upgreek}
|
|
|
|
|
\usepackage{graphicx}
|
|
|
|
|
\usepackage{subcaption}
|
|
|
|
|
\usepackage{nth}
|
|
|
|
|
\usepackage[capitalize]{cleveref}
|
|
|
|
|
\usepackage[version=4]{mhchem}
|
|
|
|
|
\usepackage{pgfgantt}
|
2021-07-09 13:13:57 -04:00
|
|
|
|
\usepackage{setspace}
|
|
|
|
|
|
2021-07-23 12:18:00 -04:00
|
|
|
|
% TODO glossary can't apparently be used in section header (even thought it
|
|
|
|
|
% would be nice)
|
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\doublespacing{}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\titleformat{\chapter}[block]{\filcenter\bfseries\large}
|
|
|
|
|
{\MakeUppercase{\chaptertitlename} \thechapter: }{0pt}{\uppercase}
|
|
|
|
|
% \titleformat{\chapter}[block]{\filcenter\bfseries\large}{}{0pt}{\uppercase}
|
|
|
|
|
\titleformat{\section}[block]{\bfseries\large}{}{0pt}{\titlecap}
|
|
|
|
|
\titleformat{\subsection}[block]{\itshape\large}{}{0pt}{\titlecap}
|
2021-07-22 12:09:26 -04:00
|
|
|
|
\titleformat{\subsubsection}[runin]{\bfseries\itshape\/}{}{0pt}{\titlecap}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\setlist[description]{font=$\bullet$~\textbf\normalfont}
|
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
% acronyms for the lazy
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\renewcommand{\glossarysection}[2][]{} % remove glossary title
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\makeglossaries{}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\newacronym{act}{ACT}{adoptive cell therapies}
|
2021-07-09 13:13:57 -04:00
|
|
|
|
\newacronym{car}{CAR}{chimeric antigen receptor}
|
|
|
|
|
\newacronym[longplural={monoclonal antibodies}]{mab}{mAb}{monoclonal antibody}
|
|
|
|
|
\newacronym{ecm}{ECM}{extracellular matrix}
|
|
|
|
|
\newacronym{cqa}{CQA}{critical quality attribute}
|
|
|
|
|
\newacronym{cpp}{CPP}{critical process parameter}
|
|
|
|
|
\newacronym{dms}{DMS}{degradable microscaffold}
|
|
|
|
|
\newacronym{doe}{DOE}{design of experiments}
|
2021-07-22 13:14:35 -04:00
|
|
|
|
\newacronym{gmp}{GMP}{Good Manufacturing Practices}
|
|
|
|
|
\newacronym{cho}{CHO}{Chinese hamster ovary}
|
|
|
|
|
\newacronym{all}{ALL}{acute lymphoblastic leukemia}
|
|
|
|
|
\newacronym{pdms}{PDMS}{polydimethylsiloxane}
|
|
|
|
|
\newacronym{dc}{DC}{dendritic cell}
|
|
|
|
|
\newacronym{il2}{IL2}{interleukin 2}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newacronym{rhil2}{rhIL2}{recombinant human interleukin 2}
|
2021-07-22 16:23:07 -04:00
|
|
|
|
\newacronym{apc}{APC}{antigen presenting cell}
|
|
|
|
|
\newacronym{mhc}{MHC}{major histocompatibility complex}
|
|
|
|
|
\newacronym{elisa}{ELISA}{enzyme-linked immunosorbent assay}
|
|
|
|
|
\newacronym{nmr}{NMR}{nuclear magnetic resonance}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newacronym{haba}{HABA}{4-hydroxyazobenene-2-carboxylic-acid}
|
|
|
|
|
\newacronym{pbs}{PBS}{phosphate buffered saline}
|
|
|
|
|
\newacronym{bca}{BCA}{bicinchoninic acid assay}
|
|
|
|
|
\newacronym{bsa}{BSA}{bovine serum albumin}
|
|
|
|
|
\newacronym{stp}{STP}{streptavidin}
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\newacronym{stppe}{STP-PE}{streptavidin-phycoerythrin}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newacronym{snb}{SNB}{sulfo-nhs-biotin}
|
|
|
|
|
\newacronym{cug}{CuG}{Cultispher G}
|
|
|
|
|
\newacronym{cus}{CuS}{Cultispher S}
|
|
|
|
|
\newacronym{pbmc}{PBMC}{peripheral blood mononuclear cells}
|
|
|
|
|
\newacronym{macs}{MACS}{magnetic activated cell sorting}
|
|
|
|
|
\newacronym{aopi}{AO/PI}{acridine orange/propidium iodide}
|
|
|
|
|
\newacronym{igg}{IgG}{immunoglobulin G}
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\newacronym{pe}{PE}{phycoerythrin}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newacronym{fitc}{FITC}{Fluorescein}
|
|
|
|
|
\newacronym{fitcbt}{FITC-BT}{Fluorescein-biotin}
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\newacronym{ptnl}{PTN-L}{Protein L}
|
|
|
|
|
\newacronym{af647}{AF647}{Alexa Fluor 647}
|
|
|
|
|
\newacronym{anova}{ANOVA}{analysis of variance}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newacronym{crispr}{CRISPR}{clustered regularly interspaced short
|
|
|
|
|
palindromic repeats}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newacronym{mtt}{MTT}{3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide}
|
|
|
|
|
\newacronym{bmi}{BMI}{body mass index}
|
2021-07-25 22:59:33 -04:00
|
|
|
|
\newacronym{a2b1}{A2B1}{integrin $\upalpha$1$\upbeta$1}
|
|
|
|
|
\newacronym{a2b2}{A2B2}{integrin $\upalpha$1$\upbeta$2}
|
|
|
|
|
\newacronym{til}{TIL}{tumor infiltrating lymphocytes}
|
2021-07-25 23:09:00 -04:00
|
|
|
|
\newacronym{nsg}{NSG}{NOD scid gamma}
|
2021-07-26 18:16:21 -04:00
|
|
|
|
\newacronym{colb}{COL-B}{collagenase B}
|
|
|
|
|
\newacronym{cold}{COL-D}{collagenase D}
|
|
|
|
|
\newacronym{tsne}{tSNE}{t-stochastic neighbor embedding}
|
2021-07-27 12:19:06 -04:00
|
|
|
|
\newacronym{anv}{AXV}{Annexin-V}
|
2021-07-27 11:07:28 -04:00
|
|
|
|
\newacronym{pi}{PI}{propidium iodide}
|
2021-07-27 12:19:06 -04:00
|
|
|
|
\newacronym{rt}{RT}{room temperature}
|
|
|
|
|
\newacronym{cas37}{Cas3/7}{Caspase-3/7}
|
|
|
|
|
\newacronym{bcl2}{BCL-2}{B cell lymphoma 2}
|
|
|
|
|
\newacronym{tmb}{TMB}{3,3',5,5'-Tetramethylbenzidine}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% SI units for uber nerds
|
|
|
|
|
|
|
|
|
|
% NOTE the \SI macro is depreciated but the arch repo (!!!) hasn't been updated
|
|
|
|
|
% with the latest package yet (texlive-science)
|
|
|
|
|
|
|
|
|
|
\sisetup{per-mode=symbol,list-units=single}
|
|
|
|
|
\DeclareSIUnit\IU{IU}
|
|
|
|
|
\DeclareSIUnit\rpm{RPM}
|
|
|
|
|
\DeclareSIUnit\dms{DMS}
|
|
|
|
|
\DeclareSIUnit\cell{cells}
|
|
|
|
|
\DeclareSIUnit\ab{mAb}
|
2021-07-27 12:19:06 -04:00
|
|
|
|
\DeclareSIUnit\normal{N}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\DeclareSIUnit\molar{M}
|
2021-07-27 12:19:06 -04:00
|
|
|
|
\DeclareSIUnit\mM{\milli\molar}
|
|
|
|
|
\DeclareSIUnit\uM{\micro\molar}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\DeclareSIUnit\gforce{\times{} g}
|
|
|
|
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
% commands for lazy farts like me
|
2021-07-22 13:23:44 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\newcommand{\mytitle}{
|
|
|
|
|
\Large{
|
|
|
|
|
\textbf{
|
|
|
|
|
Optimizing T Cell Manufacturing and Quality Using Functionalized
|
|
|
|
|
Degradable Microscaffolds
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
\newcommand{\mycommitteemember}[3]{
|
|
|
|
|
\begin{flushleft}
|
|
|
|
|
\noindent
|
|
|
|
|
#1 \\
|
|
|
|
|
#2 \\
|
|
|
|
|
\textit{#3}
|
|
|
|
|
\end{flushleft}
|
|
|
|
|
}
|
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
\newcommand{\invivo}{\textit{in vivo}}
|
|
|
|
|
\newcommand{\invitro}{\textit{in vitro}}
|
|
|
|
|
\newcommand{\exvivo}{\textit{ex vivo}}
|
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newcommand{\cd}[1]{CD{#1}}
|
|
|
|
|
\newcommand{\anti}[1]{anti-{#1}}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newcommand{\antih}[1]{anti-human {#1}}
|
|
|
|
|
\newcommand{\antim}[1]{anti-mouse {#1}}
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\newcommand{\acd}[1]{\anti{\cd{#1}}}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newcommand{\ahcd}[1]{\antih{\cd{#1}}}
|
|
|
|
|
\newcommand{\amcd}[1]{\antim{\cd{#1}}}
|
2021-07-23 13:03:28 -04:00
|
|
|
|
\newcommand{\pos}[1]{#1+}
|
|
|
|
|
\newcommand{\cdp}[1]{\pos{\cd{#1}}}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\newcommand{\cdn}[1]{\cd{#1}-}
|
2021-07-23 13:03:28 -04:00
|
|
|
|
\newcommand{\ptmem}{\cdp{62L}\pos{CCR7}}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newcommand{\ptmemp}{\ptmem{}~\si{\percent}}
|
2021-07-23 17:34:04 -04:00
|
|
|
|
\newcommand{\pth}{\cdp{4}}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newcommand{\pthp}{\pth{}~\si{\percent}}
|
2021-07-23 17:34:04 -04:00
|
|
|
|
\newcommand{\ptk}{\cdp{8}}
|
|
|
|
|
\newcommand{\ptmemh}{\pth\ptmem}
|
|
|
|
|
\newcommand{\ptmemk}{\ptk\ptmem}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\newcommand{\dpthp}{$\Updelta$\pthp{}}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\newcommand{\catnum}[2]{(#1, #2)}
|
|
|
|
|
\newcommand{\product}[3]{#1 \catnum{#2}{#3}}
|
|
|
|
|
|
|
|
|
|
\newcommand{\thermo}{Thermo Fisher}
|
|
|
|
|
\newcommand{\miltenyi}{Miltenyi Biotech}
|
|
|
|
|
\newcommand{\bl}{Biolegend}
|
|
|
|
|
|
|
|
|
|
\newcommand{\inlinecode}{\texttt}
|
|
|
|
|
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\newcommand{\subcap}[2]{\subref{#1}) #2}
|
|
|
|
|
|
2021-07-23 18:02:17 -04:00
|
|
|
|
\newcommand{\sigkey}{Significance test key: *p<0.1; **p < 0.05; ***p<0.01}
|
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% ditto for environments
|
2021-07-22 13:23:44 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\newenvironment{mytitlepage}{
|
|
|
|
|
\begin{singlespace}
|
|
|
|
|
\begin{center}
|
|
|
|
|
}
|
|
|
|
|
{
|
|
|
|
|
\end{center}
|
|
|
|
|
\end{singlespace}
|
|
|
|
|
}
|
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% begin document (proceed with caution)
|
2021-07-22 13:23:44 -04:00
|
|
|
|
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
|
|
\begin{titlepage}
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\begin{mytitlepage}
|
|
|
|
|
\mytitle{}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\Large{
|
|
|
|
|
A Dissertation \\
|
|
|
|
|
Presented to \\
|
|
|
|
|
The Academic Faculty \\
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
by
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
Nathan John Dwarshuis, B.S. \\
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
In Partial Fulfillment \\
|
|
|
|
|
of the Requirements for the Degree \\
|
|
|
|
|
Doctor of Philosophy in Biomedical Engineering in the \\
|
|
|
|
|
Wallace H. Coulter Department of Biomedical Engineering
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
Georgia Institute of Technology and Emory University \\
|
|
|
|
|
August 2021
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-22 11:30:00 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
COPYRIGHT \copyright{} BY NATHAN J. DWARSHUIS
|
|
|
|
|
}
|
|
|
|
|
\end{mytitlepage}
|
|
|
|
|
\end{titlepage}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\onecolumn \pagenumbering{roman}
|
|
|
|
|
\clearpage
|
|
|
|
|
\begin{mytitlepage}
|
|
|
|
|
\mytitle{}
|
|
|
|
|
\end{mytitlepage}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vfill
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\large{
|
|
|
|
|
\noindent
|
|
|
|
|
Committee Members
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\begin{multicols}{2}
|
|
|
|
|
\begin{singlespace}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Krishnendu\ Roy\ (Advisor)}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Madhav\ Dhodapkar}
|
|
|
|
|
{Department of Hematology and Medical Oncology}
|
|
|
|
|
{Emory University}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\vspace{1.5em}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Melissa\ Kemp}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\columnbreak{}
|
|
|
|
|
\null{}
|
|
|
|
|
\vfill
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 12:03:29 -04:00
|
|
|
|
\mycommitteemember{Dr.\ Wilbur\ Lam}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
|
|
|
|
|
|
|
|
|
\vspace{1.5em}
|
|
|
|
|
|
|
|
|
|
\mycommitteemember{Dr.\ Sakis\ Mantalaris}
|
|
|
|
|
{Department of Biomedical Engineering}
|
|
|
|
|
{Georgia Institute of Technology and Emory University}
|
|
|
|
|
|
|
|
|
|
\end{singlespace}
|
|
|
|
|
\end{multicols}
|
|
|
|
|
|
|
|
|
|
\vspace{1.5em}
|
|
|
|
|
|
|
|
|
|
\hfill Date Approved:
|
|
|
|
|
}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter*{acknowledgements}
|
|
|
|
|
\addcontentsline{toc}{chapter}{acknowledgements}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
Thank you to Lex Fridman and Devin Townsend for being awesome and inspirational.
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter*{summary}
|
|
|
|
|
\addcontentsline{toc}{chapter}{summary}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-09 13:13:57 -04:00
|
|
|
|
\Gls{act} using \gls{car} T cells have shown promise in treating cancer, but
|
|
|
|
|
manufacturing large numbers of high quality cells remains challenging. Currently
|
2021-07-22 18:34:50 -04:00
|
|
|
|
approved T cell expansion technologies involve \anti-cd{3} and \anti-cd{28}
|
|
|
|
|
\glspl{mab}, usually mounted on magnetic beads. This method fails to
|
|
|
|
|
recapitulate many key signals found \invivo{} and is also heavily licensed by a
|
|
|
|
|
few companies, limiting its long-term usefulness to manufactures and clinicians.
|
|
|
|
|
Furthermore, we understand that highly potent T cells are generally
|
|
|
|
|
less-differentiated subtypes such as central memory and stem memory T cells.
|
|
|
|
|
Despite this understanding, little has been done to optimize T cell expansion
|
|
|
|
|
for generating these subtypes, including measurement and feedback control
|
|
|
|
|
strategies that are necessary for any modern manufacturing process.
|
2021-07-09 13:13:57 -04:00
|
|
|
|
|
|
|
|
|
The goal of this thesis was to develop a microcarrier-based \gls{dms} T cell
|
|
|
|
|
expansion system as well as determine biologically-meaningful \glspl{cqa} and
|
|
|
|
|
\glspl{cpp} that could be used to optimize for highly-potent T cells. In Aim 1,
|
|
|
|
|
we develop and characterized the \gls{dms} system, including quality control
|
|
|
|
|
steps. We also demonstrate the feasiblity of expanding highly-potent memory and
|
|
|
|
|
CD4+ T cells, and showing compatibility with existing \gls{car} transduction
|
|
|
|
|
methods. In aim 2, we use \gls{doe} methodology to optimize the \gls{dms}
|
|
|
|
|
platform, and develop a computational pipeline to identify and model the effect
|
|
|
|
|
of measurable \glspl{cqa} and \glspl{cpp} on the final product. In aim 3, we
|
2021-07-22 13:23:44 -04:00
|
|
|
|
demonstrate the effectiveness of the \gls{dms} platform \invivo{}. This
|
2021-07-09 13:13:57 -04:00
|
|
|
|
thesis lays the groundwork for a novel T cell expansion method which can be used
|
|
|
|
|
in a clinical setting, and also provides a path toward optimizing for product
|
|
|
|
|
quality in an industrial setting.
|
|
|
|
|
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
\tableofcontents
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
\listoffigures
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
\listoftables
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
% \twocolumn
|
|
|
|
|
\chapter*{acronyms}
|
|
|
|
|
\addcontentsline{toc}{chapter}{acronyms}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\printglossary[type=\acronymtype]
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
\pagenumbering{arabic}
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter{introduction}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
\section*{overview}
|
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
% TODO this is basically the same as the first part of the backgound, I guess I
|
|
|
|
|
% can just trim it down
|
|
|
|
|
|
2021-07-22 13:14:35 -04:00
|
|
|
|
T cell-based immunotherapies have received great interest from clinicians and
|
|
|
|
|
industry due to their potential to treat, and often cure, cancer and other
|
|
|
|
|
diseases\cite{Fesnak2016,Rosenberg2015}. In 2017, Novartis and Kite Pharma
|
|
|
|
|
received FDA approval for \textit{Kymriah} and \textit{Yescarta} respectively,
|
|
|
|
|
two genetically-modified \gls{car} T cell therapies against B cell malignancies.
|
|
|
|
|
Despite these successes, \gls{car} T cell therapies are constrained by an
|
|
|
|
|
expensive and difficult-to-scale manufacturing process with little control on
|
|
|
|
|
cell quality and phenotype3,4. State-of-the-art T cell manufacturing techniques
|
2021-07-23 11:53:15 -04:00
|
|
|
|
focus on \acd{3} and \acd{28} activation and expansion, typically
|
2021-07-22 18:34:50 -04:00
|
|
|
|
presented on superparamagnetic, iron-based microbeads (Invitrogen Dynabead,
|
|
|
|
|
Miltenyi MACS beads), on nanobeads (Miltenyi TransACT), or in soluble tetramers
|
2021-07-22 13:14:35 -04:00
|
|
|
|
(Expamer)\cite{Roddie2019,Dwarshuis2017,Wang2016, Piscopo2017, Bashour2015}.
|
|
|
|
|
These strategies overlook many of the signaling components present in the
|
2021-07-22 13:23:44 -04:00
|
|
|
|
secondary lymphoid organs where T cells expand \invivo{}. Typically, T cells are
|
2021-07-22 13:14:35 -04:00
|
|
|
|
activated under close cell-cell contact, which allows for efficient
|
|
|
|
|
autocrine/paracrine signaling via growth-stimulating cytokines such as
|
|
|
|
|
\gls{il2}. Additionally, the lymphoid tissues are comprised of \gls{ecm}
|
|
|
|
|
components such as collagen, which provide signals to upregulate proliferation,
|
|
|
|
|
cytokine production, and pro-survival pathways\cite{Gendron2003, Ohtani2008,
|
|
|
|
|
Boisvert2007, Ben-Horin2004}. We hypothesized that culture conditions that
|
2021-07-22 13:23:44 -04:00
|
|
|
|
better mimic these \invivo{} expansion conditions of T cells, can significantly
|
2021-07-22 13:14:35 -04:00
|
|
|
|
improve the quality and quantity of manufactured T cells and provide better
|
|
|
|
|
control on the resulting T cell phenotype.
|
|
|
|
|
|
|
|
|
|
% TODO mention the Cloudz stuff that's in my presentation
|
|
|
|
|
|
|
|
|
|
A variety of solutions have been proposed to make the T cell expansion process
|
|
|
|
|
more physiological. One strategy is to use modified feeder cell cultures to
|
|
|
|
|
provide activation signals similar to those of \glspl{dc}\cite{Forget2014}.
|
|
|
|
|
While this has the theoretical capacity to mimic many components of the lymph
|
|
|
|
|
node, it is hard to reproduce on a large scale due to the complexity and
|
|
|
|
|
inherent variability of using cell lines in a fully \gls{gmp}-compliant manner.
|
|
|
|
|
Others have proposed biomaterials-based solutions to circumvent this problem,
|
|
|
|
|
including lipid-coated microrods\cite{Cheung2018}, 3D-scaffolds via either
|
|
|
|
|
Matrigel\cite{Rio2018} or 3d-printed lattices\cite{Delalat2017}, ellipsoid
|
|
|
|
|
beads\cite{meyer15_immun}, and \gls{mab}-conjugated \gls{pdms}
|
|
|
|
|
beads\cite{Lambert2017} that respectively recapitulate the cellular membrane,
|
|
|
|
|
large interfacial contact area, 3D-structure, or soft surfaces T cells normally
|
2021-07-22 13:23:44 -04:00
|
|
|
|
experience \invivo{}. While these have been shown to provide superior expansion
|
2021-07-22 13:14:35 -04:00
|
|
|
|
compared to traditional microbeads, none of these methods has been able to show
|
|
|
|
|
preferential expansion of functional naïve/memory and CD4 T cell populations.
|
|
|
|
|
Generally, T cells with a lower differentiation state such as naïve and memory
|
|
|
|
|
cells have been shown to provide superior anti-tumor potency, presumably due to
|
|
|
|
|
their higher potential to replicate, migrate, and engraft, leading to a
|
|
|
|
|
long-term, durable response\cite{Xu2014, Fraietta2018, Gattinoni2011,
|
|
|
|
|
Gattinoni2012}. Likewise, CD4 T cells are similarly important to anti-tumor
|
|
|
|
|
potency due to their cytokine release properties and ability to resist
|
|
|
|
|
exhaustion\cite{Wang2018, Yang2017}. Therefore, methods to increase naïve/memory
|
|
|
|
|
and CD4 T cells in the final product are needed, a critical consideration being
|
|
|
|
|
ease of translation to industry and ability to interface with scalable systems
|
|
|
|
|
such as bioreactors.
|
|
|
|
|
|
|
|
|
|
% TODO probably need to address some of the modeling stuff here as well
|
|
|
|
|
|
|
|
|
|
This thesis describes a novel degradable microscaffold-based method derived from
|
2021-07-23 11:53:15 -04:00
|
|
|
|
porous microcarriers functionalized with \acd{3} and \acd{28} \glspl{mab}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
for use in T cell expansion cultures. Microcarriers have historically been used
|
2021-07-22 13:14:35 -04:00
|
|
|
|
throughout the bioprocess industry for adherent cultures such as stem cells and
|
|
|
|
|
\gls{cho} cells, but not with suspension cells such as T
|
|
|
|
|
cells\cite{Heathman2015, Sart2011}. The microcarriers chosen to make the DMSs in
|
|
|
|
|
this study have a microporous structure that allows T cells to grow inside and
|
|
|
|
|
along the surface, providing ample cell-cell contact for enhanced autocrine and
|
|
|
|
|
paracrine signaling. Furthermore, the carriers are composed of gelatin, which is
|
|
|
|
|
a collagen derivative and therefore has adhesion domains that are also present
|
|
|
|
|
within the lymph nodes. Finally, the 3D surface of the carriers provides a
|
|
|
|
|
larger contact area for T cells to interact with the \glspl{mab} relative to
|
|
|
|
|
beads; this may better emulate the large contact surface area that occurs
|
|
|
|
|
between T cells and \glspl{dc}. These microcarriers are readily available in
|
|
|
|
|
over 30 countries and are used in an FDA fast-track-approved combination retinal
|
|
|
|
|
pigment epithelial cell product (Spheramine, Titan Pharmaceuticals) {\#}[Purcell
|
|
|
|
|
documentation]. This regulatory history will aid in clinical translation. We
|
|
|
|
|
show that compared to traditional microbeads, \gls{dms}-expanded T cells not
|
|
|
|
|
only provide superior expansion, but consistently provide a higher frequency of
|
|
|
|
|
naïve/memory and CD4 T cells (CCR7+CD62L+) across multiple donors. We also
|
|
|
|
|
demonstrate functional cytotoxicity using a CD19 \gls{car} and a superior
|
|
|
|
|
performance, even at a lower \gls{car} T cell dose, of \gls{dms}-expanded
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\gls{car}-T cells \invivo{} in a mouse xenograft model of human B cell
|
|
|
|
|
\gls{all}. Our results indicate that \glspl{dms} provide a robust and scalable
|
|
|
|
|
platform for manufacturing therapeutic T cells with higher naïve/memory
|
|
|
|
|
phenotype and more balanced CD4+ T cell content.
|
2021-07-22 13:14:35 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section*{hypothesis}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:23:44 -04:00
|
|
|
|
The hypothesis of this dissertation was that using \glspl{dms} created from
|
|
|
|
|
off-the-shelf microcarriers and coated with activating \glspl{mab} would lead to
|
|
|
|
|
higher quantity and quality T cells as compared to state-of-the-art bead-based
|
|
|
|
|
expansion. The objective of this dissertation was to develop this platform, test
|
|
|
|
|
its effectiveness both \invivo{} and \invivo{}, and develop computational
|
|
|
|
|
pipelines that could be used in a manufacturing environment.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section*{specific aims}
|
2021-07-22 13:48:51 -04:00
|
|
|
|
|
|
|
|
|
The specific aims of this dissertation are outlined in
|
|
|
|
|
\cref{fig:graphical_overview}.
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics[width=\textwidth]{example-image-a}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Project Overview]{High-level workflow.}
|
|
|
|
|
\label{fig:graphical_overview}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\subsection*{aim 1: develop and optimize a novel T cell expansion process that
|
|
|
|
|
mimics key components of the lymph nodes}
|
|
|
|
|
|
|
|
|
|
% TODO this might be easier to break apart in separate aims
|
|
|
|
|
|
|
|
|
|
In this first aim, we demonstrated the process for manufacturing \glspl{dms},
|
|
|
|
|
including quality control steps that are necessary for translation of this
|
|
|
|
|
platform into a scalable manufacturing setting. We also demonstrate that the
|
|
|
|
|
\gls{dms} platform leads to higher overall expansion of T cells and higher
|
|
|
|
|
overall fractions of potent memory and CD4+ subtypes desired for T cell
|
|
|
|
|
therapies. Finally, we demonstrate \invitro{} that the \gls{dms} platform can be
|
|
|
|
|
used to generate functional \gls{car} T cells targeted toward CD19.
|
|
|
|
|
|
|
|
|
|
\subsection*{aim 2: develop methods to control and predict T cell quality}
|
|
|
|
|
|
|
|
|
|
For this second aim, we investigated methods to identify and control \glspl{cqa}
|
|
|
|
|
and glspl{cpp} for manufacturing T cells using the \gls{dms} platform. This was
|
|
|
|
|
accomplished through two sub-aims:
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item[A --] Develop computational methods to control and predict T cell
|
|
|
|
|
expansion and quality
|
|
|
|
|
\item[B --] Perturb \gls{dms} expansion to identify additional mechanistic
|
|
|
|
|
controls for expansion and quality
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
|
|
\subsection*{aim 3: confirm potency of T cells from novel T cell expansion
|
|
|
|
|
process using \invivo{} xenograft mouse model}
|
|
|
|
|
|
|
|
|
|
In this final aim, we demonstrate the effectiveness of \gls{dms}-expanded T
|
|
|
|
|
cells compared to state-of-the-art beads using \invivo{} mouse models for
|
|
|
|
|
\gls{all}.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section*{outline}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
In Chapter~\ref{background}, we provide additional background on the current
|
|
|
|
|
state of T cell manufacturing and how the work in this dissertation moves the
|
2021-07-25 23:11:30 -04:00
|
|
|
|
field forward. In Chapters~\ref{aim1},~\ref{aim2a},~\ref{aim2b}, and~\ref{aim3}
|
|
|
|
|
we present the work pertaining to Aims 1, 2, and 3 respectively. Finally, we
|
|
|
|
|
present our final conclusions in Chapter~\ref{conclusions}.
|
2021-07-22 13:59:46 -04:00
|
|
|
|
|
|
|
|
|
\chapter{background and significance}\label{background}
|
|
|
|
|
\section*{background}
|
2021-07-22 16:23:07 -04:00
|
|
|
|
|
|
|
|
|
% TODO break this apart into mfg tech and T cell phenotypes/quality
|
|
|
|
|
% TODO consider adding a separate section on microcarriers and their use in
|
|
|
|
|
% bioprocess
|
|
|
|
|
% TODO add stuff about T cell licensing
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\subsection*{current T cell manufacturing technologies}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
\Gls{car} T cell therapy has received great interest from both academia and
|
|
|
|
|
industry due to its potential to treat cancer and other
|
|
|
|
|
diseases\cite{Fesnak2016, Rosenberg2015}. In 2017, Novartis and Kite Pharma
|
|
|
|
|
acquired FDA approval for \textit{Kymriah} and \textit{Yescarta} respectively,
|
|
|
|
|
two \gls{car} T cell therapies against B cell malignancies. Despite these
|
|
|
|
|
successes, \gls{car} T cell therapies are constrained by an expensive and
|
|
|
|
|
difficult-to-scale manufacturing process\cite{Roddie2019, Dwarshuis2017}.
|
|
|
|
|
|
|
|
|
|
Of critical concern, state-of-the-art manufacturing techniques focus only on
|
2021-07-23 11:53:15 -04:00
|
|
|
|
Signal 1 and Signal 2-based activation via \acd{3} and \acd{28} \glspl{mab},
|
2021-07-22 16:23:07 -04:00
|
|
|
|
typically presented on a microbead (Invitrogen Dynabead, Miltenyi MACS beads) or
|
|
|
|
|
nanobead (Miltenyi TransACT), but also in soluble forms in the case of antibody
|
|
|
|
|
tetramers (Expamer)\cite{Wang2016, Piscopo2017, Roddie2019, Bashour2015}. These
|
|
|
|
|
strategies overlook many of the signaling components present in the secondary
|
|
|
|
|
lymphoid organs where T cells normally expand. Typically, T cells are activated
|
|
|
|
|
under close cell-cell contact via \glspl{apc} such as \glspl{dc}, which present
|
|
|
|
|
peptide-\glspl{mhc} to T cells as well as a variety of other costimulatory
|
|
|
|
|
signals. These close quarters allow for efficient autocrine/paracrine signaling
|
2021-07-22 18:34:50 -04:00
|
|
|
|
among the expanding T cells, which secrete gls{il2} and other cytokines to
|
|
|
|
|
assist their own growth. Additionally, the lymphoid tissues are comprised of
|
|
|
|
|
\gls{ecm} components such as collagen, which provide signals to upregulate
|
|
|
|
|
proliferation, cytokine production, and pro-survival pathways\cite{Gendron2003,
|
|
|
|
|
Ohtani2008, Boisvert2007, Ben-Horin2004}.
|
2021-07-22 16:23:07 -04:00
|
|
|
|
|
|
|
|
|
A variety of solutions have been proposed to make the T cell expansion process
|
|
|
|
|
more physiological. One strategy is to use modified feeder cell cultures to
|
|
|
|
|
provide activation signals similar to those of \glspl{dc}\cite{Forget2014}.
|
|
|
|
|
While this has the theoretical capacity to mimic several key components of the
|
|
|
|
|
lymph node, it is hard to reproduce on a large scale due to the complexity and
|
|
|
|
|
inherent variability of using cell lines in a fully \gls{gmp}-compliant manner.
|
|
|
|
|
Others have proposed biomaterials-based solutions to circumvent this problem,
|
|
|
|
|
including lipid-coated microrods\cite{Cheung2018}, 3D-scaffolds via either
|
|
|
|
|
Matrigel\cite{Rio2018} or 3d-printed lattices\cite{Delalat2017}, ellipsoid
|
|
|
|
|
beads\cite{meyer15_immun}, and \gls{mab}-conjugated \gls{pdms}
|
|
|
|
|
beads\cite{Lambert2017} that respectively recapitulate the cellular membrane,
|
|
|
|
|
large interfacial contact area, 3D-structure, or soft surfaces T cells normally
|
|
|
|
|
experience \textit{in vivo}. While these have been shown to provide superior
|
|
|
|
|
expansion compared to traditional microbeads, no method has been able to show
|
|
|
|
|
preferential expansion of functional memory and CD4 T cell populations.
|
|
|
|
|
Generally, T cells with a lower differentiation state such as memory cells have
|
|
|
|
|
been shown to provide superior anti-tumor potency, presumably due to their
|
|
|
|
|
higher potential to replicate, migrate, and engraft, leading to a long-term,
|
|
|
|
|
durable response\cite{Xu2014, Gattinoni2012, Fraietta2018, Gattinoni2011}.
|
|
|
|
|
Likewise, CD4 T cells are similarly important to anti-tumor potency due to their
|
|
|
|
|
cytokine release properties and ability to resist exhaustion\cite{Wang2018,
|
|
|
|
|
Yang2017}, and no method exists to preferentially expand the CD4 population
|
|
|
|
|
compared to state-of-the-art systems.
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
Here we propose a method using microcarriers functionalized with \acd{3} and
|
|
|
|
|
\acd{28} \glspl{mab} for use in T cell expansion cultures. Microcarriers have
|
2021-07-22 16:23:07 -04:00
|
|
|
|
historically been used throughout the bioprocess industry for adherent cultures
|
|
|
|
|
such as stem cells and \gls{cho} cells, but not with suspension cells such as T
|
|
|
|
|
cells\cite{Heathman2015, Sart2011}. The carriers have a macroporous structure
|
|
|
|
|
that allows T cells to grow inside and along the surface, providing ample
|
|
|
|
|
cell-cell contact for enhanced autocrine and paracrine signaling. Furthermore,
|
|
|
|
|
the carriers are composed of gelatin, which is a collagen derivative and
|
|
|
|
|
therefore has adhesion domains that are also present within the lymph nodes.
|
|
|
|
|
Finally, the 3D surface of the carriers provides a larger contact area for T
|
|
|
|
|
cells to interact with the \glspl{mab} relative to beads; this may better
|
|
|
|
|
emulate the large contact surface area that occurs between T cells and
|
|
|
|
|
\glspl{dc}.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
\subsection*{strategies to optimize cell manufacturing}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
The \gls{dms} system has a number of parameters that can be optimized, and a
|
|
|
|
|
\gls{doe} is an ideal framework to test multiple parameters simultaneously. The
|
|
|
|
|
goal of \gls{doe} is to answer a data-driven question with the least number of
|
|
|
|
|
resources. It was developed in many non-biological industries throughout the
|
|
|
|
|
\nth{20} century such as the automotive and semiconductor industries where
|
|
|
|
|
engineers needed to minimize downtime and resource consumption on full-scale
|
|
|
|
|
production lines.
|
|
|
|
|
|
|
|
|
|
% TODO add a bit more about the math of a DOE here
|
|
|
|
|
|
|
|
|
|
\Glspl{doe} served three purposes in this dissertation. First, we used them as
|
|
|
|
|
screening tools, which allowed us to test many input parameters and filter out
|
|
|
|
|
the few that likely have the greatest effect on the response. Second, they were
|
|
|
|
|
used to make a robust response surface model to predict optimums using
|
|
|
|
|
relatively few resources, especially compared to full factorial or
|
|
|
|
|
one-factor-at-a-time approaches. Third, we used \glspl{doe} to discover novel
|
|
|
|
|
effects and interactions that generated hypotheses that could influence the
|
|
|
|
|
directions for future work.
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\subsection*{strategies to characterize cell manufacturing}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
A number of multiomics strategies exist which can generate rich datasets for T
|
|
|
|
|
cells. We will consider several multiomics strategies within this proposal:
|
|
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
|
\item[Luminex:] A multiplexed bead-based \gls{elisa} that can measure
|
|
|
|
|
many bulk (not single cell) cytokine concentrations simultaneously
|
|
|
|
|
in a media sample. Since this only requires media (as opposed to
|
|
|
|
|
destructively measuring cells) we will use this as a longitudinal
|
|
|
|
|
measurement.
|
|
|
|
|
\item[Metabolomics:] It is well known that T cells of different
|
|
|
|
|
lineages have different metabolic profiles; for instance memory T
|
|
|
|
|
cells have larger aerobic capacity and fatty acid
|
|
|
|
|
oxidation\cite{Buck2016, van_der_Windt_2012}. We will interrogate
|
|
|
|
|
key metabolic species using \gls{nmr} in collaboration with the
|
|
|
|
|
Edison Lab at the University of Georgia. This will be both a
|
|
|
|
|
longitudinal assay using media samples (since some metabolites may
|
|
|
|
|
be expelled from cells that are indicative of their phenotype) and
|
|
|
|
|
at endpoint where we will lyse the cells and interogate their entire
|
|
|
|
|
metabolome.
|
|
|
|
|
\item[Flow and Mass Cytometry:] Flow cytometry using fluorophores has been used
|
|
|
|
|
extensively for immune cell analysis, but has a practical limit of
|
|
|
|
|
approximately 18 colors\cite{Spitzer2016}. Mass cytometry is analogous to
|
|
|
|
|
traditional flow cytometry except that it uses heavy-metal \gls{mab}
|
|
|
|
|
conjugates, which has a practical limit of over 50 markers. This will be
|
|
|
|
|
useful in determining precise subpopulations and phenotypes that may be
|
|
|
|
|
influencing responses, especially when one considers that many cell types can
|
|
|
|
|
be defined by more than one marker combination. We will perform this at
|
|
|
|
|
endpoint. While mass cytometry is less practical than simple flow cytometers
|
|
|
|
|
such as the BD Accuri, we may find that only a few markers are required to
|
|
|
|
|
accurately predict performance, and thus this could easily translate to
|
|
|
|
|
industry using relatively cost-effective equipment.
|
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
|
|
% TODO add a computational section
|
|
|
|
|
|
|
|
|
|
% TODO add a section explaining causal inference since this is a big part of
|
|
|
|
|
% the end of aim 1
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{Innovation}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 16:23:07 -04:00
|
|
|
|
\subsection{Innovation}
|
|
|
|
|
|
|
|
|
|
Several aspects of this work are novel considering the state-of-the-art
|
|
|
|
|
technology for T cell manufacturing:
|
|
|
|
|
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item \Glspl{dms} offers a compelling alternative to state-of-the-art magnetic
|
|
|
|
|
bead technologies (e.g. DynaBeads, MACS-Beads), which is noteworthy because
|
|
|
|
|
the licenses for these techniques is controlled by only a few companies
|
|
|
|
|
(Invitrogen and Miltenyi respectively). Because of this, bead-based expansion
|
|
|
|
|
is more expensive to implement and therefore hinders companies from entering
|
|
|
|
|
the rapidly growing T cell manufacturing arena. Providing an alternative as we
|
|
|
|
|
are doing will add more options, increase competition among both raw material
|
|
|
|
|
and T cell manufacturers, and consequently drive down cell therapy market
|
|
|
|
|
prices and increase innovation throughout the industry.
|
|
|
|
|
\item This is the first technology for T cell immunotherapies that selectively
|
|
|
|
|
expands memory T cell populations with greater efficiency relative to
|
|
|
|
|
bead-based expansion Others have demonstrated methods that can achieve greater
|
|
|
|
|
expansion of T cells, but not necessarily specific populations that are known
|
|
|
|
|
to be potent.
|
|
|
|
|
\item We propose to optimize our systems using \gls{doe} methodology, which is a
|
|
|
|
|
strategy commonly used in other industries and disciplines but has yet to gain
|
|
|
|
|
wide usage in the development of cell therapies. \Glspl{doe} are advantageous
|
|
|
|
|
as they allow the inspection of multiple parameters simultaneously, allowing
|
|
|
|
|
efficient and comprehensive analysis of the system vs a one-factor-at-a-time
|
|
|
|
|
approach. We believe this method is highly relevant to the development of cell
|
|
|
|
|
therapies, not only for process optimization but also hypotheses generation.
|
|
|
|
|
Of further note, most \textit{in vivo} experiments are not done using a
|
|
|
|
|
\gls{doe}-based approach; however, a \gls{doe} is perfectly natural for a
|
|
|
|
|
large mouse study where one naturally desires to use as few animals as
|
|
|
|
|
possible.
|
|
|
|
|
\item The \gls{dms} system is be compatible with static bioreactors such as the
|
|
|
|
|
G-Rex which has been adopted throughout the cell therapy industry. Thus this
|
|
|
|
|
technology can be easily incorporated into existing cell therapy process that
|
|
|
|
|
are performed at scale.
|
|
|
|
|
\item We analyzed our system using a multiomics approach, which will enable the
|
|
|
|
|
discovery of novel biomarkers to be used as \glspl{cqa}. While this approach
|
|
|
|
|
has been applied to T cells previously, it has not been done in the context of
|
|
|
|
|
a large \gls{doe}-based model. This approach is aware of the whole design
|
|
|
|
|
space, and thus enables greater understanding of process parameters and their
|
|
|
|
|
effect on cell phenotype.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
\chapter{aim 1}\label{aim1}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{introduction}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
The first aim was to develop a microcarrier system that mimics several key
|
|
|
|
|
aspects of the \invivo{} lymph node microenvironment. We compared compare this
|
|
|
|
|
system to state-of-the-art T cell activation technologies for both expansion
|
|
|
|
|
potential and memory cell formation. The governing hypothesis was that
|
2021-07-23 11:53:15 -04:00
|
|
|
|
microcarriers functionalized with \acd{3} and \acd{28} \glspl{mab} will
|
2021-07-22 18:34:50 -04:00
|
|
|
|
provide superior expansion and memory phenotype compared to state-of-the-art
|
|
|
|
|
bead-based T cell expansion technology.
|
|
|
|
|
|
|
|
|
|
% TODO this doesn't flow that well and is repetitive with what comes above
|
|
|
|
|
|
|
|
|
|
Microcarriers have been used throughout the bioprocess industry for adherent
|
|
|
|
|
cell cultures such as \gls{cho} cells and stem cells, as they are able to
|
|
|
|
|
achieve much greater surface area per unit volume than traditional 2D
|
|
|
|
|
cultures\cite{Heathman2015, Sart2011}. Adding adhesive \glspl{mab} to the
|
|
|
|
|
microcarriers will adapt them for suspension cell cultures such as T cells.
|
|
|
|
|
Consequently, the large macroporous structure will allow T cells to cluster more
|
|
|
|
|
closely, which in turn will enable better autocrine and paracrine signaling.
|
|
|
|
|
Specifically, two cytokines that are secreted by T cells, IL-2 and IL-15, are
|
|
|
|
|
known to drive expansion and memory phenotype respectively\cite{Buck2016}.
|
|
|
|
|
Therefore, the proposed microcarrier system should enable greater expansion and
|
|
|
|
|
better retention of memory phenotype compared to current bead-based methods.
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{methods}
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\subsection{dms functionalization}
|
|
|
|
|
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_flowchart.png}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[\gls{dms} Flowchart]{Overview of \gls{dms} manufacturing process.}
|
|
|
|
|
\label{fig:dms_flowchart}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
Gelatin microcarriers (\gls{cus} or \gls{cug}, GE Healthcare, DG-2001-OO and
|
|
|
|
|
DG-0001-OO) were suspended at \SI{20}{\mg\per\ml} in 1X \gls{pbs} and
|
|
|
|
|
autoclaved. All subsequent steps were done aseptically, and all reactions were
|
|
|
|
|
carried out at \SI{20}{\mg\per\ml} carriers at room temperature and agitated
|
|
|
|
|
using an orbital shaker with a \SI{3}{\mm} orbit diameter. After autoclaving,
|
|
|
|
|
the microcarriers were washed using sterile \gls{pbs} three times in a 10:1
|
2021-07-23 11:53:15 -04:00
|
|
|
|
volume ratio. \product{\Gls{snb}}{\thermo}{21217} was dissolved at
|
2021-07-27 12:19:06 -04:00
|
|
|
|
approximately \SI{10}{\uM} in sterile ultrapure water, and the true
|
2021-07-23 11:53:15 -04:00
|
|
|
|
concentration was then determined using the \gls{haba} assay (see below).
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\SI{5}{\ul\of{\ab}\per\mL} \gls{pbs} was added to carrier suspension and allowed
|
|
|
|
|
to react for \SI{60}{\minute} at \SI{700}{\rpm} of agitation. After the
|
|
|
|
|
reaction, the amount of biotin remaining in solution was quantified using the
|
|
|
|
|
\gls{haba} assay (see below). The carriers were then washed three times, which
|
|
|
|
|
entailed adding sterile \gls{pbs} in a 10:1 volumetric ratio, agitating at
|
|
|
|
|
\SI{900}{\rpm} for \SI{10}{\minute}, adding up to a 15:1 volumetric ratio
|
|
|
|
|
(relative to reaction volume) of sterile \gls{pbs}, centrifuging at
|
|
|
|
|
\SI{1000}{\gforce} for \SI{1}{\minute}, and removing all liquid back down to the
|
|
|
|
|
reaction volume.
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
To coat with \gls{stp}, \SI{40}{\ug\per\mL} \product{\gls{stp}}{Jackson
|
2021-07-26 18:16:21 -04:00
|
|
|
|
Immunoresearch}{016-000-114} was added and allowed to react for
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\SI{60}{\minute} at \SI{700}{RPM} of agitation. After the reaction, supernatant
|
2021-07-27 12:19:06 -04:00
|
|
|
|
was taken for the \product{\gls{bca} assay}{\thermo}{23225}, and the carriers
|
|
|
|
|
were washed analogously to the previous wash step to remove the biotin, except
|
|
|
|
|
two washes were done and the agitation time was \SI{30}{\minute}. Biotinylated
|
|
|
|
|
\glspl{mab} against human CD3 \catnum{\bl}{317320} and CD28 \catnum{\bl}{302904}
|
|
|
|
|
were combined in a 1:1 mass ratio and added to the carriers at
|
|
|
|
|
\SI{0.2}{\ug\of{\ab}\per\mg\of{\dms}}. Along with the \glspl{mab}, sterile
|
|
|
|
|
\product{\gls{bsa}}{Sigma}{A9576} was added to a final concentration of
|
|
|
|
|
\SI{2}{\percent} in order to prevent non-specific binding of the antibodies to
|
|
|
|
|
the reaction tubes. \glspl{mab} were allowed to bind to the carriers for
|
|
|
|
|
\SI{60}{\minute} with \SI{700}{\rpm} agitation. After binding, supernatants were
|
|
|
|
|
sampled to quantify remaining \gls{mab} concentration using an
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\product{\anti{\gls{igg}} \gls{elisa} kit}{Abcam}{157719}. Fully functionalized
|
|
|
|
|
\glspl{dms} were washed in sterile \gls{pbs} analogous to the previous washing
|
|
|
|
|
step to remove excess \gls{stp}. They were washed once again in the cell culture
|
|
|
|
|
media to be used for the T cell expansion.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
The concentration of the final \gls{dms} suspension was found by taking a
|
|
|
|
|
\SI{50}{\uL} sample, plating in a well, and imaging the entire well. The image
|
|
|
|
|
was then manually counted to obtain a concentration. Surface area for
|
|
|
|
|
\si{\ab\per\um\squared} was calculated using the properties for \gls{cus} and
|
|
|
|
|
\gls{cug} as given by the manufacturer {Table X}.
|
|
|
|
|
|
|
|
|
|
%TODO this bit belongs in the next aim
|
|
|
|
|
% In the case of the \gls{doe} experiment where
|
|
|
|
|
% variable mAb surface density was utilized, the anti-CD3/anti-CD28 mAb mixture
|
|
|
|
|
% was further combined with a biotinylated isotype control to reduce the overall
|
|
|
|
|
% fraction of targeted mAbs (for example the 60\% mAb surface density corresponded
|
|
|
|
|
% to 3 mass parts anti-CD3, 3 mass parts anti-CD8, and 4 mass parts isotype
|
|
|
|
|
% control).
|
|
|
|
|
|
|
|
|
|
\subsection{dms quality control assays}
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
Biotin was quantified using the \product{\gls{haba} assay}{Sigma}{H2153-1VL}. In
|
|
|
|
|
the case of quantifying \gls{snb} prior to adding it to the microcarriers, the
|
|
|
|
|
sample volume was quenched in a 1:1 volumetric ratio with \SI{1}{\molar} NaOH
|
|
|
|
|
and allowed to react for \SI{1}{\minute} in order to prevent the reactive ester
|
|
|
|
|
linkages from binding to the avidin proteins in the \gls{haba}/avidin premix.
|
|
|
|
|
All quantifications of \gls{haba} were performed on an Eppendorf D30
|
|
|
|
|
Spectrophotometer using \product{\SI{70}{\ul} cuvettes}{BrandTech}{759200}. The
|
|
|
|
|
extinction coefficient at \SI{500}{\nm} for \gls{haba}/avidin was assumed to be
|
|
|
|
|
\SI{34000}{\per\cm\per\molar}.
|
|
|
|
|
|
|
|
|
|
\gls{stp} binding to the carriers was quantified indirectly using a
|
2021-07-27 12:19:06 -04:00
|
|
|
|
\product{\gls{bca} kit}{\thermo}{23227} according to the manufacturer’s
|
2021-07-23 11:53:15 -04:00
|
|
|
|
instructions, with the exception that the standard curve was made with known
|
|
|
|
|
concentrations of purified \gls{stp} instead of \gls{bsa}. Absorbance at
|
|
|
|
|
\SI{592}{\nm} was quantified using a Biotek plate reader.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
\Gls{mab} binding to the microcarriers was quantified indirectly using an
|
|
|
|
|
\gls{elisa} assay per the manufacturer’s instructions, with the exception that
|
|
|
|
|
the same antibodies used to coat the carriers were used as the standard for the
|
|
|
|
|
\gls{elisa} standard curve.
|
|
|
|
|
|
|
|
|
|
Open biotin binding sites on the \glspl{dms} after \gls{stp} coating was
|
2021-07-25 22:25:23 -04:00
|
|
|
|
quantified indirectly using \product{\gls{fitcbt}}{\thermo}{B10570}.
|
|
|
|
|
Briefly, \SI{400}{\pmol\per\ml} \gls{fitcbt} were added to \gls{stp}-coated
|
2021-07-23 11:53:15 -04:00
|
|
|
|
carriers and allowed to react for \SI{20}{\minute} at room temperature under
|
|
|
|
|
constant agitation. The supernatant was quantified against a standard curve of
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\gls{fitcbt} using a Biotek plate reader.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
\Gls{stp} binding was verified after the \gls{stp}-binding step visually by
|
2021-07-25 22:25:23 -04:00
|
|
|
|
adding \gls{fitcbt} to the \gls{stp}-coated \glspl{dms}, resuspending in
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\SI{1}{\percent} agarose gel, and imaging on a \product{lightsheet
|
|
|
|
|
microscope}{Zeiss}{Z.1}. \Gls{mab} binding was verified visually by first
|
2021-07-25 22:25:23 -04:00
|
|
|
|
staining with \product{\anti{\gls{igg}}-\gls{fitc}}{\bl}{406001}, incubating for
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\SI{30}{\minute}, washing with \gls{pbs}, and imaging on a confocal microscope.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
\subsection{t cell culture}
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
% TODO verify countess product number
|
|
|
|
|
Cryopreserved primary human T cells were either obtained as sorted
|
|
|
|
|
\product{\cdp{3} T cells}{Astarte Biotech}{1017} or isolated from
|
|
|
|
|
\product{\glspl{pbmc}}{Zenbio}{SER-PBMC} using a negative selection
|
|
|
|
|
\product{\cdp{3} \gls{macs} kit}{\miltenyi}{130-096-535}. T cells were activated
|
|
|
|
|
using \glspl{dms} or \product{\SI{3.5}{\um} CD3/CD28 magnetic
|
|
|
|
|
beads}{\miltenyi}{130-091-441}. In the case of beads, T cells were activated
|
|
|
|
|
at the manufacturer recommended cell:bead ratio of 2:1. In the case of
|
|
|
|
|
\glspl{dms}, cells were activated using \SI{2500}{\dms\per\cm\squared} unless
|
|
|
|
|
otherwise noted. Initial cell density was \SIrange{2e6}{2.5e6}{\cell\per\ml} to
|
|
|
|
|
in a 96 well plate with \SI{300}{\ul} volume. Serum-free media was either
|
|
|
|
|
\product{OpTmizer}{\thermo}{A1048501} or
|
|
|
|
|
\product{TexMACS}{\miltenyi}{170-076-307} supplemented with
|
|
|
|
|
\SIrange{100}{400}{\IU\per\ml} \product{\gls{rhil2}}{Peprotech}{200-02}. Cell
|
|
|
|
|
cultures were expanded for \SI{14}{\day} as counted from the time of initial
|
|
|
|
|
seeding and activation. Cell counts and viability were assessed using
|
|
|
|
|
\product{trypan blue}{\thermo}{T10282} or \product{\gls{aopi}}{Nexcelom
|
|
|
|
|
Bioscience}{CS2-0106-5} and a \product{Countess Automated Cell Counter}{Thermo
|
|
|
|
|
Fisher}{Countess 3 FL}. Media was added to cultures every \SIrange{2}{3}{\day}
|
|
|
|
|
depending on media color or a \SI{300}{\mg\per\deci\liter} minimum glucose
|
|
|
|
|
threshold. Media glucose was measured using a \product{GlucCell glucose
|
|
|
|
|
meter}{Chemglass}{CLS-1322-02}.
|
|
|
|
|
|
|
|
|
|
% TODO this belongs in aim 2
|
2021-07-22 18:34:50 -04:00
|
|
|
|
% In order to remove \glspl{dms} from
|
|
|
|
|
% culture, collagenase D (Sigma Aldrich) was sterile filtered in culture media and
|
|
|
|
|
% added to a final concentration of \SI{50}{\ug\per\ml} during media addition.
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
Cells on the \glspl{dms} were visualized by adding \SI{0.5}{\ul}
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\product{\gls{stppe}}{\bl}{405204} and \SI{2}{ul}
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\product{\acd{45}-\gls{af647}}{\bl}{368538}, incubating for \SI{1}{\hour}, and
|
|
|
|
|
imaging on a spinning disk confocal microscope.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
2021-07-27 12:19:06 -04:00
|
|
|
|
\subsection{quantification of apoptosis using Annexin-V}
|
|
|
|
|
|
|
|
|
|
Apoptosis was quantified using \gls{anv} according to the manufacturer's
|
|
|
|
|
instructions. Briefly, cells were transferred to flow tubes and washed twice
|
|
|
|
|
with \gls{pbs} by adding \SI{3}{\ml} to each tube, centrifuging for
|
|
|
|
|
\SI{400}{\gforce}, and aspirating the liquid down to \SI{200}{\ul}. The cells
|
|
|
|
|
were analogously washed a third time with staining buffer (\SI{10}{\mM} HEPES,
|
|
|
|
|
\SI{140}{\mM} NaCl, \SI{2.5}{\mM} CaCl\textsubscript{2}) and aspirated down to a
|
|
|
|
|
final volume of \SI{100}{\ul}. Cells were stained in this volume with
|
|
|
|
|
\SI{1}{\ul} \product{\gls{anv}-\gls{fitc}}{\bl}{640906} and \SI{5}{\ul}
|
|
|
|
|
\product{\gls{pi}}{\thermo}{P3566} and incubated for \SI{15}{\minute} at gls{rt}
|
|
|
|
|
in the dark. After incubation, \SI{400}{\ul} staining buffer was added to each
|
|
|
|
|
tube. Each tube was then analyzed via flow cytometry.
|
|
|
|
|
|
|
|
|
|
\subsection{quantification of Caspase-3/7}
|
|
|
|
|
|
|
|
|
|
\Gls{cas37} was quantified using \product{CellEvent dye}{\thermo}{C10723}
|
|
|
|
|
according the manufacturer's instructions. Briefly, a 2X (\SI{8}{\mM}) working
|
|
|
|
|
solution of CellEvent dye was added to \SI{100}{\ul} cell suspension (at least
|
|
|
|
|
\num{5e4} cells) and incubated at \SI{37}{\degreeCelsius} for \SI{30}{\minute}.
|
|
|
|
|
After incubation, cells were immediately analyzed via flow cytometry.
|
|
|
|
|
|
|
|
|
|
\subsection{quantification of BCL-2}
|
|
|
|
|
|
|
|
|
|
\Gls{bcl2} was quantified using an \product{Human Total Bcl-2 DuoSet \gls{elisa}
|
|
|
|
|
kit}{Rnd Systems}{DYC827B-2} according to the manufacturer's instructions and
|
|
|
|
|
supplemented with \product{5X diluent buffer}{\bl}{421203}, \product{\gls{tmb}
|
|
|
|
|
substrate solution}{eBioscience}{00-4201-56}, and \SI{2}{\normal}
|
|
|
|
|
H\textsubscript{2}SO\textsubscript{4} stop solution made in house. Briefly,
|
|
|
|
|
cells were lysed using \product{10X lysis buffer}{Cell Signaling}{9803S}, and
|
|
|
|
|
the lysate was quantified for protein using a \product{\gls{bca}
|
|
|
|
|
assay}{\thermo}{23225} as directed. Standardized lysates were measured using
|
|
|
|
|
the \gls{elisa} kit as directed.
|
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\subsection{chemotaxis assay}
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
% TODO not sure about the transwell product number
|
2021-07-22 18:34:50 -04:00
|
|
|
|
Migratory function was assayed using a transwell chemotaxis assay as previously
|
2021-07-23 11:53:15 -04:00
|
|
|
|
described\cite{Hromas1997}. Briefly, \SI{3e5}{\cell} were loaded into a
|
|
|
|
|
\product{transwell plate with \SI{5}{\um} pore size}{Corning}{3421} with the
|
|
|
|
|
basolateral chamber loaded with \SI{600}{\ul} media and 0, 250, or
|
|
|
|
|
\SI{1000}{\ng\per\mL} \product{CCL21}{Peprotech}{250-13}. The plate was
|
|
|
|
|
incubated for \SI{4}{\hour} after loading, and the basolateral chamber of each
|
|
|
|
|
transwell was quantified for total cells using \product{countbright
|
|
|
|
|
beads}{\thermo}{C36950}. The final readout was normalized using the
|
|
|
|
|
\SI{0}{\ng\per\mL} concentration as background.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
\subsection{degranulation assay}
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
Cytotoxicity of expanded \gls{car} T cells was assessed using a degranulation
|
|
|
|
|
assay as previously described\cite{Schmoldt1975}. Briefly, \num{3e5} T cells
|
|
|
|
|
were incubated with \num{1.5e5} target cells consisting of either \product{K562
|
|
|
|
|
wild type cells}{ATCC}{CCL-243} or CD19- expressing K562 cells transformed
|
|
|
|
|
with \gls{crispr} (kindly provided by Dr.\ Yvonne Chen, UCLA)\cite{Zah2016}.
|
|
|
|
|
Cells were seeded in a flat bottom 96 well plate with \SI{1}{\ug\per\ml}
|
|
|
|
|
\product{\acd{49d}}{eBioscience}{16-0499-81}, \SI{2}{\micro\molar} \product{monensin}{eBioscience}{
|
|
|
|
|
00-4505-51}, and \SI{1}{\ug\per\ml} \product{\acd{28}}{eBioscience}{302914} (all
|
|
|
|
|
functional grade \glspl{mab}) with \SI{250}{\ul} total volume. After
|
|
|
|
|
\SI{4}{\hour} incubation at \SI{37}{\degreeCelsius}, cells were stained for CD3,
|
|
|
|
|
CD4, and CD107a and analyzed on a BD LSR Fortessa. Readout was calculated as the
|
|
|
|
|
percent \cdp{107a} cells of the total \cdp{8} fraction.
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
\subsection{car expression}
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\gls{car} expression was quantified as previously described\cite{Zheng2012}.
|
|
|
|
|
Briefly, cells were washed once and stained with \product{biotinylated
|
|
|
|
|
\gls{ptnl}}{\thermo}{29997}. After a subsequent wash, cells were stained with
|
|
|
|
|
\product{\gls{pe}-\gls{stp}}{\bl}{405204}, washed again, and analyzed on a
|
|
|
|
|
BD Accuri. Readout was percent \gls{pe}+ cells as compared to secondary controls
|
|
|
|
|
(\gls{pe}-\gls{stp} with no \gls{ptnl}).
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
|
|
|
|
\subsection{car plasmid and lentiviral transduction}
|
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
The anti-CD19-CD8-CD137-CD3z \gls{car} with the EF1$\upalpha$
|
|
|
|
|
promotor\cite{Milone2009} was synthesized (Aldevron) and subcloned into a
|
|
|
|
|
\product{FUGW}{Addgene}{14883} kindly provided by the Emory Viral Vector Core.
|
|
|
|
|
Lentiviral vectors were synthesized by the Emory Viral Vector Core or the
|
|
|
|
|
Cincinnati Children's Hospital Medical Center Viral Vector Core. To transduce
|
|
|
|
|
primary human T cells, \product{retronectin}{Takara}{T100A} was coated onto
|
|
|
|
|
non-TC treated 96 well plates and used to immobilize lentiviral vector particles
|
|
|
|
|
according to the manufacturer's instructions. Briefly, retronectin solution was
|
|
|
|
|
adsorbed overnight at \SI{4}{\degreeCelsius} and blocked the next day using
|
|
|
|
|
\gls{bsa}. Prior to transduction, lentiviral supernatant was spinoculated at
|
|
|
|
|
\SI{2000}{\gforce} for \SI{2}{\hour} at \SI{4}{\degreeCelsius}. T cells were
|
|
|
|
|
activated in 96 well plates using beads or \glspl{dms} for \SI{24}{\hour}, and
|
|
|
|
|
then cells and beads/\glspl{dms} were transferred onto lentiviral vector coated
|
|
|
|
|
plates and incubated for another \SI{24}{\hour}. Cells and beads/\glspl{dms}
|
|
|
|
|
were removed from the retronectin plates using vigorous pipetting and
|
|
|
|
|
transferred to another 96 well plate wherein expansion continued.
|
|
|
|
|
|
2021-07-27 12:19:06 -04:00
|
|
|
|
|
2021-07-27 11:07:28 -04:00
|
|
|
|
|
2021-07-23 11:53:15 -04:00
|
|
|
|
\subsection{statistical analysis}
|
|
|
|
|
|
|
|
|
|
For 1-way \gls{anova} analysis with Tukey multiple comparisons test,
|
|
|
|
|
significance was assessed using the \inlinecode{stat\_compare\_means} function
|
|
|
|
|
with the \inlinecode{t.test} method from the \inlinecode{ggpubr} library in R.
|
|
|
|
|
For 2-way \gls{anova} analysis, the significance of main and interaction effects
|
|
|
|
|
was determined using the car library in R.
|
|
|
|
|
|
|
|
|
|
% TODO not all of this stuff applied to my regressions
|
|
|
|
|
For least-squares linear regression, statistical significance was evaluated the
|
|
|
|
|
\inlinecode{lm} function in R. Stepwise regression models were obtained using
|
|
|
|
|
the \inlinecode{stepAIC} function from the \inlinecode{MASS} package with
|
|
|
|
|
forward and reverse stepping. All results with categorical variables are
|
|
|
|
|
reported relative to baseline reference. Each linear regression was assessed for
|
|
|
|
|
validity using residual plots (to assess constant variance and independence
|
|
|
|
|
assumptions), QQplots and Shapiro-Wilk normality test (to assess normality
|
|
|
|
|
assumptions), Box-Cox plots (to assess need for power transformations), and
|
|
|
|
|
lack-of-fit tests where replicates were present (to assess model fit in the
|
|
|
|
|
context of pure error). Statistical significance was evaluated at $\upalpha$ =
|
|
|
|
|
0.05.
|
|
|
|
|
|
|
|
|
|
% TODO add meta-analysis section
|
2021-07-22 18:34:50 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{results}
|
2021-07-23 12:18:00 -04:00
|
|
|
|
|
|
|
|
|
\subsection{DMSs can be fabricated in a controlled manner}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
Two types of gelatin-based microcariers, \gls{cus} and \gls{cug}, were
|
|
|
|
|
covalently conjugated with varying concentration of \gls{snb} and then coated
|
|
|
|
|
with \gls{stp} and \glspl{mab} to make \glspl{dms}. Aside from slight
|
|
|
|
|
differences in swelling ratio and crosslinking chemistry {\#}[Purcell
|
|
|
|
|
documentation], the properties of \gls{cus} and \gls{cug} were the same
|
|
|
|
|
(\cref{tab:carrier_props}). We chose to continue with the \gls{cus}-based
|
|
|
|
|
\glspl{dms}, which showed higher overall \gls{stp} binding compared to
|
|
|
|
|
\gls{cug}-based \glspl{dms} (\cref{fig:cug_vs_cus}). We showed that by varying
|
|
|
|
|
the concentration of \gls{snb}, we were able to precisely control the amount of
|
|
|
|
|
attached biotin (\cref{fig:biotin_coating}), mass of attached \gls{stp}
|
|
|
|
|
(\cref{fig:stp_coating}), and mass of attached \glspl{mab}
|
|
|
|
|
(\cref{fig:mab_coating}). Furthermore, we showed that the microcarriers were
|
|
|
|
|
evenly coated with \gls{stp} on the surface and throughout the interior as
|
|
|
|
|
evidenced by the presence of biotin-binding sites occupied with \gls{stp}-\gls{fitc}
|
|
|
|
|
on the microcarrier surfaces after the \gls{stp}-coating step
|
|
|
|
|
(\cref{fig:stp_carrier_fitc}). Finally, we confirmed that biotinylated
|
|
|
|
|
\glspl{mab} were bound to the \glspl{dms} by staining either \gls{stp} or
|
|
|
|
|
\gls{stp} and \gls{mab}-coated carriers with \antim{\gls{igg}-\gls{fitc}} and imaging
|
|
|
|
|
on a confocal microscope (\cref{fig:mab_carrier_fitc}). Taking this together, we
|
|
|
|
|
noted that the maximal \gls{mab} binding capacity occurred near \SI{50}{\nmol}
|
|
|
|
|
biotin input (which corresponded to \SI{2.5}{\nmol\per\mg\of{\dms}}) thus we
|
|
|
|
|
used this in subsequent processes.
|
|
|
|
|
|
|
|
|
|
% TODO add paragraph explaining the qc stuff
|
|
|
|
|
|
|
|
|
|
% TODO add paragraph explaining the reaction kinetics stuff
|
|
|
|
|
|
|
|
|
|
% TODO flip the rows of this figure (right now the text is backward)
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_coating.png}
|
|
|
|
|
\phantomsubcaption\label{fig:stp_carrier_fitc}
|
|
|
|
|
\phantomsubcaption\label{fig:mab_carrier_fitc}
|
|
|
|
|
\phantomsubcaption\label{fig:cug_vs_cus}
|
|
|
|
|
\phantomsubcaption\label{fig:biotin_coating}
|
|
|
|
|
\phantomsubcaption\label{fig:stp_coating}
|
|
|
|
|
\phantomsubcaption\label{fig:mab_coating}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[\gls{dms} Coating]
|
|
|
|
|
{\gls{dms} functionalization results.
|
|
|
|
|
\subcap{fig:stp_carrier_fitc}{\gls{stp}-coated or uncoated \glspl{dms}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
treated with \gls{fitcbt} and imaged using a lightsheet microscope.}
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\subcap{fig:mab_carrier_fitc}{\gls{mab}-coated or \gls{stp}-coated
|
|
|
|
|
\glspl{dms} treated with \anti{\gls{igg}} \glspl{mab} and imaged using a
|
|
|
|
|
lightsheet microscope.} \subcap{fig:cug_vs_cus}{Bound \gls{stp} surface
|
|
|
|
|
density on either \gls{cus} or \gls{cug} microcarriers. Surface density
|
|
|
|
|
was estimated using the properties in~\cref{tab:carrier_props}} Total
|
|
|
|
|
binding curve of \subcap{fig:biotin_coating}{biotin},
|
|
|
|
|
\subcap{fig:stp_coating}{\gls{stp}}, and
|
|
|
|
|
\subcap{fig:mab_coating}{\glspl{mab}} as a function of biotin added. }
|
|
|
|
|
\label{fig:dms_flowchart}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
% TODO these caption titles suck
|
|
|
|
|
% TODO combine this DOE figure into one interaction plot
|
2021-07-23 13:03:28 -04:00
|
|
|
|
\begin{table}[!h] \centering
|
|
|
|
|
\caption{Properties of the microcarriers used}
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\label{tab:carrier_props}
|
2021-07-23 13:03:28 -04:00
|
|
|
|
\input{../tables/carrier_properties.tex}
|
|
|
|
|
\end{table}
|
|
|
|
|
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_qc.png}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_qc_doe}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_qc_ph}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_qc_washes}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_snb_decay_curves}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[\gls{dms} Quality Control]
|
|
|
|
|
{\gls{dms} quality control investigation and development
|
|
|
|
|
\subcap{fig:dms_qc_doe}{\gls{doe} investigating the effect of initial mass
|
|
|
|
|
of microcarriers, reaction temperature, and biotin concentration on
|
|
|
|
|
biotin attachment.}
|
|
|
|
|
\subcap{fig:dms_qc_ph}{Effect of reaction ph on biotin attachment.}
|
|
|
|
|
\subcap{fig:dms_qc_washes}{effect of post-autoclave washing of the
|
|
|
|
|
microcarriers on biotin attachment.}
|
|
|
|
|
\subcap{fig:dms_snb_decay_curves}{Hydrolysis curves of \gls{snb} in
|
|
|
|
|
\gls{pbs} of differing pH.}
|
|
|
|
|
All statistical tests where p-values are noted are given by two-tailed t
|
|
|
|
|
tests.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:dms_flowchart}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_timing.png}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_biotin_rxn_mass}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_biotin_rxn_frac}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_stp_per_time}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\caption[\gls{dms} Reaction kinetics]
|
2021-07-23 17:14:45 -04:00
|
|
|
|
{Reaction kinetics for microcarrier functionalization.
|
|
|
|
|
\subcap{fig:dms_biotin_rxn_mass}{Biotin mass bound per time}
|
|
|
|
|
\subcap{fig:dms_biotin_rxn_frac}{Fraction of input biotin bound per time}
|
|
|
|
|
\subcap{fig:dms_stp_per_time}{\Gls{stp} bound per time.}
|
|
|
|
|
}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\label{fig:dms_kinetics}
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\end{figure*}
|
2021-07-23 12:18:00 -04:00
|
|
|
|
|
|
|
|
|
\subsection{DMSs can efficiently expand T cells compared to beads}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
% TODO add other subfigures here
|
|
|
|
|
We next sought to determine how our \glspl{dms} could expand T cells compared to
|
|
|
|
|
state-of-the-art methods used in industry. All bead expansions were performed as
|
|
|
|
|
per the manufacturer’s protocol, with the exception that the starting cell
|
|
|
|
|
densities were matched between the beads and carriers to
|
|
|
|
|
~\SI{2.5e6}{\cell\per\ml}. Throughout the culture we observed that T cells in
|
|
|
|
|
\gls{dms} culture grew in tight clumps on the surface of the \glspl{dms} as well
|
|
|
|
|
as inside the pores of the \glspl{dms}
|
|
|
|
|
(\cref{fig:dms_cells_phase,fig:dms_cells_fluor}). Furthermore, we observed that
|
|
|
|
|
the \glspl{dms} conferred greater expansion compared to traditional beads, and
|
|
|
|
|
significantly greater expansion after \SI{12}{\day} of culture {Figure X}. We
|
|
|
|
|
also observed no T cell expansion using \glspl{dms} coated with an isotype
|
|
|
|
|
control mAb compared to \glspl{dms} coated with \acd{3}/\acd{28} \glspl{mab}
|
|
|
|
|
{Figure X}, confirming specificity of the expansion method.
|
|
|
|
|
|
2021-07-23 17:14:45 -04:00
|
|
|
|
% TODO make sure the day on these is correct
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/cells_on_dms.png}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_cells_phase}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_cells_fluor}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
2021-07-23 17:34:04 -04:00
|
|
|
|
\caption[T cells growing on \glspl{dms}]
|
2021-07-23 17:14:45 -04:00
|
|
|
|
{Cells grow in tight clusters in and around functionalized \gls{dms}.
|
|
|
|
|
\subcap{fig:dms_cells_phase}{Phase-contrast image of T cells growing on
|
|
|
|
|
\glspl{dms} on day 7}
|
|
|
|
|
\subcap{fig:dms_cells_fluor}{Confocal images of T cells in varying z-planes
|
|
|
|
|
growing on \glspl{dms} on day 9. \Glspl{dms} were stained using
|
|
|
|
|
\gls{stppe} (red) and T cells were stained using \acd{45}-\gls{af647}.}
|
|
|
|
|
}
|
2021-07-23 17:34:04 -04:00
|
|
|
|
\label{fig:dms_cells}
|
2021-07-23 17:14:45 -04:00
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
% TODO add a regression table to quantify this better
|
|
|
|
|
% TODO state the CI of what are inside the carriers
|
|
|
|
|
We also asked how many cells were inside the \glspl{dms} vs. free-floating in
|
|
|
|
|
suspension and/or loosely attached to the surface. We qualitatively verified the
|
|
|
|
|
presence of cells inside the \glspl{dms} using a \gls{mtt} stain to opaquely
|
|
|
|
|
mark cells and enable visualization on a brightfield microscope
|
|
|
|
|
(\cref{fig:dms_inside_bf}). After seeding \glspl{dms} at different densities and
|
|
|
|
|
expanding for \SI{14}{\day}, we filtered the \glspl{dms} out of the cell
|
|
|
|
|
suspension and digested them using dispase to free any cells attached on the
|
|
|
|
|
inner surface. We observed that approximately \SI{15}{\percent} of the total
|
|
|
|
|
cells after \SI{14}{\day} were on the interior surface of the \glspl{dms}
|
|
|
|
|
(\cref{fig:dms_inside_regression}).
|
|
|
|
|
|
|
|
|
|
%, and this did not significantly change with initial seeding density (Supplemental Table 1).
|
|
|
|
|
|
2021-07-27 11:07:28 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/apoptosis.png}
|
|
|
|
|
\phantomsubcaption\label{fig:apoptosis_annV}
|
|
|
|
|
\phantomsubcaption\label{fig:apoptosis_cas}
|
|
|
|
|
\phantomsubcaption\label{fig:apoptosis_bcl2}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Apoptosis Quantification for \glspl{dms}]
|
|
|
|
|
{\glspl{dms} produce cells with lower apoptosis marker expression on average
|
|
|
|
|
compared to bead.
|
|
|
|
|
\subcap{fig:apoptosis_annV}{Quantification of apoptosis and necrosis by
|
|
|
|
|
\gls{anv} and \gls{pi}.}
|
|
|
|
|
\subcap{fig:apoptosis_cas}{Quantification of Caspase-3/7 expression using
|
|
|
|
|
CellEvent dye.}
|
|
|
|
|
\subcap{fig:apoptosis_bcl2}{Quantification of BCL-2 expression using
|
|
|
|
|
\gls{elisa}. All statistical tests shown are two-tailed homoschodastic
|
|
|
|
|
t-tests.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:dms_flowchart}
|
|
|
|
|
\end{figure*}
|
2021-07-26 18:16:21 -04:00
|
|
|
|
|
2021-07-23 18:02:17 -04:00
|
|
|
|
% TODO add this to the methods section
|
|
|
|
|
% TODO double check the timing of this experiment (it might not be day 14)
|
|
|
|
|
% TODO provide the regression results and coefficients from this
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_inside.png}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_inside_bf}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_inside_regression}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[A subset of T cells grow in interior of \glspl{dms}]
|
|
|
|
|
{A percentage of T cells grow in the interior of \glspl{dms}.
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\subcap{fig:dms_inside_bf}{T cells stained dark with \gls{mtt} after
|
|
|
|
|
growing on either coated or uncoated \glspl{dms} for 14 days visualized
|
|
|
|
|
with brightfield microscope.}
|
2021-07-23 18:02:17 -04:00
|
|
|
|
\subcap{fig:dms_inside_regression}{Linear regression performed on T cell
|
|
|
|
|
percentages harvested on the interior of the \glspl{dms} vs the initial
|
|
|
|
|
starting cell density.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:dms_inside}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-23 12:18:00 -04:00
|
|
|
|
\subsection{DMSs lead to greater expansion and memory and CD4+ phenotypes}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
After observing differences in expansion, we further hypothesized that the
|
|
|
|
|
\gls{dms} cultures could lead to a different T cell phenotype. In particular, we
|
|
|
|
|
were interested in the formation of naïve and memory T cells, as these represent
|
|
|
|
|
a subset with higher replicative potential and therefore improved clinical
|
|
|
|
|
prognosis\cite{Gattinoni2011, Wang2018}. We measured naïve and memory T cell
|
|
|
|
|
frequency staining for CCR7 and CD62L (both of which are present on lower
|
|
|
|
|
differentiated T cells such as naïve, central memory, and stem memory
|
|
|
|
|
cells\cite{Gattinoni2012}). Using three donors, we noted again \glspl{dms}
|
|
|
|
|
produced more T cells over a \SI{14}{\day} expansion than beads, with
|
|
|
|
|
significant differences in number appearing as early after \SI{5}{\day}
|
|
|
|
|
(\cref{fig:dms_exp_fold_change}). Furthermore, we noted that \glspl{dms}
|
|
|
|
|
produced more memory/naïve cells after \SI{14}{\day} when compared to beads for
|
|
|
|
|
all donors (\cref{fig:dms_exp_mem,fig:dms_exp_cd4}) showing that the \gls{dms}
|
|
|
|
|
platform is able to selectively expand potent, early differentiation T cells.
|
|
|
|
|
|
|
|
|
|
Of additional interest was the preservation of the CD4+ compartment. In healthy
|
|
|
|
|
donor samples (such as those used here), the typical CD4:CD8 ratio is 2:1. We
|
|
|
|
|
noted that \glspl{dms} produced more CD4+ T cells than bead cultures as well as
|
|
|
|
|
naïve/memory, showing that the \gls{dms} platform can selectively expand CD4 T
|
|
|
|
|
cells to a greater degree than beads (Figure 2c). The trends held true when
|
|
|
|
|
observing the CD4+ and CD8+ fractions of the naïve/memory subset (CD62L+CCR7+)
|
|
|
|
|
(\cref{fig:dms_exp_mem4,fig:dms_exp_mem8}).
|
|
|
|
|
|
2021-07-23 17:34:04 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_vs_bead_expansion.png}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_exp_fold_change}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_exp_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_exp_cd4}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_exp_mem4}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_exp_mem8}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[\gls{dms} vs bead expansion]
|
|
|
|
|
{\gls{dms} lead to superior expansion of T cells compared to beads across
|
|
|
|
|
multiple donors.
|
|
|
|
|
\subcap{fig:dms_exp_fold_change}{Longitudinal fold change of T cells grown
|
|
|
|
|
using either \glspl{dms} or beads. Significance was evaulated using t
|
|
|
|
|
tests at each timepoint}
|
|
|
|
|
Fold change of subpopulations expanded using either \gls{dms} or beads at
|
|
|
|
|
day 14, including
|
|
|
|
|
\subcap{fig:dms_exp_mem}{\ptmem{} cells},
|
|
|
|
|
\subcap{fig:dms_exp_cd4}{\pth{} cells},
|
|
|
|
|
\subcap{fig:dms_exp_mem4}{\ptmemh{} cells}, and
|
2021-07-23 18:02:17 -04:00
|
|
|
|
\subcap{fig:dms_exp_mem8}{\ptmemk{} cells}. \sigkey{}
|
2021-07-23 17:34:04 -04:00
|
|
|
|
}
|
|
|
|
|
\label{fig:dms_exp}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
% TODO add a paragraph for this figure
|
|
|
|
|
|
2021-07-23 18:02:17 -04:00
|
|
|
|
% TODO this figure has weird proportions
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/dms_phenotypes.png}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_phenotype_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:dms_phenotype_cd4}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Representative flow plots of \ptmem{} and \pth{} T cells]
|
|
|
|
|
{Representative flow plots of \ptmem{} and \pth{} T cells at day 14 of
|
|
|
|
|
expansion using either beads or \glspl{dms}. For three representative donor
|
|
|
|
|
samples, phenotypes are shown for \subcap{fig:dms_phenotype_mem}{\ptmem{}}
|
|
|
|
|
and \subcap{fig:dms_phenotype_cd4}{\pth}. Each population was also gated on
|
|
|
|
|
\cdp{3} T cells.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:dms_phenotype}
|
|
|
|
|
\end{figure*}
|
2021-07-23 12:18:00 -04:00
|
|
|
|
|
|
|
|
|
\subsection*{DMSs can be used to produce functional CAR T cells}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
After optimizing for naïve/memory and CD4 yield, we sought to determine if the
|
|
|
|
|
\glspl{dms} were compatible with lentiviral transduction protocols used to
|
|
|
|
|
generate \gls{car} T cells27,28. We added a \SI{24}{\hour} transduction step on
|
|
|
|
|
day 1 of the \SI{14}{\day} expansion to insert an anti-CD19 \gls{car}29 and
|
|
|
|
|
subsequently measured the surface expression of the \gls{car} on day 14
|
|
|
|
|
\cref{fig:car_production_flow_pl,fig:car_production_endpoint_pl}. We noted that
|
|
|
|
|
there was robust \gls{car} expression in over \SI{25}{\percent} of expanded T
|
|
|
|
|
cells, and there was no observable difference in \gls{car} expression between
|
|
|
|
|
beads and \glspl{dms}.
|
|
|
|
|
|
|
|
|
|
We also verified the functionality of expanded \gls{car} T cells using a
|
|
|
|
|
degranulation assay\cite{Zheng2012}. Briefly, T cells were cocultured with
|
|
|
|
|
target cells (either wild-type K562 or CD19-expressing K562 cells) for
|
|
|
|
|
\SI{4}{\hour}, after which the culture was analyzed via flow cytometry for the
|
|
|
|
|
appearance of CD107a on CD8+ T cells. CD107a is found on the inner-surface of
|
|
|
|
|
cytotoxic granules and will emerge on the surface after cytotoxic T cells are
|
|
|
|
|
activated and degranulate. Indeed, we observed degranulation in T cells expanded
|
|
|
|
|
with both beads and \glspl{dms}, although not to an observably different degree
|
|
|
|
|
\cref{fig:car_production_flow_degran,fig:car_production_endpoint_degran}. Taken
|
|
|
|
|
together, these results indicated that the \glspl{dms} provide similar
|
|
|
|
|
transduction efficiency compared to beads.
|
|
|
|
|
|
|
|
|
|
We also verified that expanded T cells were migratory using a chemotaxis assay
|
|
|
|
|
for CCL21; since \glspl{dms} produced a larger percentage of naïve and memory T
|
|
|
|
|
cells (which have CCR7, the receptor for CCL21) we would expect higher migration
|
|
|
|
|
in \gls{dms}-expanded cells vs.\ their bead counterparts. Indeed, we noted a
|
|
|
|
|
significantly higher migration percentage for T cells grown using \glspl{dms}
|
|
|
|
|
versus beads (\cref{fig:car_production_migration}). Interestingly, there also
|
|
|
|
|
appeared to be a decrease in CCL21 migration between transduced and untransduced
|
|
|
|
|
T cells expanded using beads, but this interaction effect was only weakly
|
|
|
|
|
significant (p = 0.068). No such effect was seen for \gls{dms}-expanded T cells,
|
|
|
|
|
showing that migration was likely independent of \gls{car} transduction.
|
|
|
|
|
|
2021-07-23 18:16:45 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/car_production.png}
|
|
|
|
|
\phantomsubcaption\label{fig:car_production_flow_pl}
|
|
|
|
|
\phantomsubcaption\label{fig:car_production_endpoint_pl}
|
|
|
|
|
\phantomsubcaption\label{fig:car_production_flow_degran}
|
|
|
|
|
\phantomsubcaption\label{fig:car_production_endpoint_degran}
|
|
|
|
|
\phantomsubcaption\label{fig:car_production_migration}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[\glspl{dms} produce functional \gls{car} T cells]
|
|
|
|
|
{\glspl{dms} produce functional \gls{car} T cells.
|
|
|
|
|
\subcap{fig:car_production_flow_pl}{Representative flow cytometry plot for
|
|
|
|
|
transduced or untransduced T cells stained with \gls{ptnl}.}
|
|
|
|
|
\subcap{fig:car_production_endpoint_pl}{Endpoint plots with \gls{anova} for
|
|
|
|
|
transduced or untransduced T cells stained with \gls{ptnl}.}
|
|
|
|
|
\subcap{fig:car_production_flow_degran}{Representative flow plot for
|
|
|
|
|
degenerating T cells.}
|
|
|
|
|
\subcap{fig:car_production_endpoint_degran}{Endpoint plots for transduced or
|
|
|
|
|
untransduced T cells stained with \cd{107a} for the degranulation assay.}
|
|
|
|
|
\subcap{fig:car_production_migration}{Endpoint plot for transmigration assay
|
|
|
|
|
with \gls{anova}.} All data is from T cells expanded for \SI{14}{\day}.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:dms_phenotype}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-23 12:18:00 -04:00
|
|
|
|
\subsection{DMSs do not leave antibodies attached to cell product}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
We asked if \glspl{mab} from the \glspl{dms} detached from the \gls{dms} surface
|
|
|
|
|
and could be detected on the final T cell product. This test is important for
|
|
|
|
|
clinical translation as any residual \glspl{mab} on T cells injected into the
|
|
|
|
|
patient could elicit an undesirable \antim{\gls{igg}} immune response. We did
|
|
|
|
|
not detect the presence of either \ahcd{3} or \ahcd{28} \glspl{mab} (both of
|
|
|
|
|
which were \gls{igg}) on the final T cell product after \SI{14}{\day} of
|
|
|
|
|
expansion (\cref{fig:nonstick}).
|
|
|
|
|
|
2021-07-23 18:22:21 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/nonstick.png}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[\glspl{mab} do not detach from \glspl{dms}]
|
|
|
|
|
{\glspl{mab} do not detach from microcarriers onto T cells in a detectable
|
|
|
|
|
manner. Plots are representative manufacturing runs harvest after
|
|
|
|
|
\SI{14}{\day} of expansion and stained with \anti{\gls{igg}}.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:nonstick}
|
|
|
|
|
\end{figure*}
|
2021-07-23 12:18:00 -04:00
|
|
|
|
|
|
|
|
|
\subsection{DMSs consistently outperform bead-based expansion compared to
|
|
|
|
|
beads in a variety of conditions}
|
|
|
|
|
|
2021-07-25 22:25:23 -04:00
|
|
|
|
n order to establish the robustness of our method, we combined all experiments
|
|
|
|
|
performed in our lab using beads or \glspl{dms} and combined them into one
|
|
|
|
|
dataset. Since each experiment was performed using slightly different process
|
|
|
|
|
conditions, we hypothesized that performing causal inference on such a dataset
|
|
|
|
|
would not only indicate if the \glspl{dms} indeed led to better results under a
|
|
|
|
|
variety of conditions, but would also indicate other process parameters that
|
|
|
|
|
influence the outcome. The dataset was curated by compiling all experiments and
|
|
|
|
|
filtering those that ended at day 14 and including flow cytometry results for
|
|
|
|
|
the \ptmem{} and \pth{} populations. We further filtered our data to only
|
|
|
|
|
include those experiments where the surface density of the CD3 and CD28
|
|
|
|
|
\gls{mab} were held constant (since some of our experiments varied these on the
|
|
|
|
|
\glspl{dms}). This ultimately resulted in a dataset with 162 runs spanning 15
|
|
|
|
|
experiments between early 2017 and early 2021.
|
|
|
|
|
|
|
|
|
|
% TODO add some correlation analysis to this
|
|
|
|
|
|
|
|
|
|
Since the aim of the analysis was to perform causal inference, we determined 6
|
|
|
|
|
possible treatment variables which we controlled when designing the experiments
|
|
|
|
|
included in this dataset. Obviously the principle treatment parameter was
|
|
|
|
|
‘activation method’ which represented the effect of activating T cells with
|
|
|
|
|
either beads or our DMS method. We also included ‘bioreactor’ which was a
|
|
|
|
|
categorical for growing the T cells in a Grex bioreactor vs polystyrene plates,
|
|
|
|
|
‘feed criteria’ which represented the criteria used to feed the cells (using
|
|
|
|
|
media color or a glucose meter), ‘IL2 Feed Conc’ as a continuous parameter for
|
|
|
|
|
the concentration of IL2 added each feed cycle, and ‘CD19-CAR Transduced’
|
|
|
|
|
representing if the cells were lentivirally transduced or not. Unfortunately,
|
|
|
|
|
many of these parameters correlated with each other highly despite the large
|
|
|
|
|
size of our dataset, so the only two parameters for which causal relationships
|
|
|
|
|
could be evaluated were ‘activation method’ and ‘bioreactor’. We should also
|
|
|
|
|
note that these were not the only set of theoretical treatment parameters that
|
|
|
|
|
we could have used. For example, media feed rate is an important process
|
|
|
|
|
parameter, but this was dependent on the feeding criteria and the growth rate of
|
|
|
|
|
the cells, which in turn is determined by activation method. Therefore, ‘media
|
|
|
|
|
feed rate’ (or similar) is a ‘post-treatment parameter’ and would have violated
|
|
|
|
|
the backdoor criteria and severely biased our estimates of the treatment
|
|
|
|
|
parameters themselves.
|
|
|
|
|
|
|
|
|
|
In addition to these treatment parameters, we also included covariates to
|
|
|
|
|
improve the precision of our model. Among these were donor parameters including
|
|
|
|
|
age, \gls{bmi}, demographic, and gender, as well as the initial viability and
|
|
|
|
|
CD4/CD8 ratio of the cryopreserved cell lots used in the experiments. We also
|
|
|
|
|
included the age of key reagents such as IL2, media, and the anti-aggregate
|
|
|
|
|
media used to thaw the T cells prior to activation. Each experiment was
|
|
|
|
|
performed by one of three operators, so this was included as a three-level
|
|
|
|
|
categorical parameter. Lastly, some of our experiments were sampled
|
|
|
|
|
longitudinally, so we included a boolean categorical to represented this
|
|
|
|
|
modification as removing conditioned media as the cell are expanding could
|
|
|
|
|
disrupt signaling pathways.
|
|
|
|
|
|
|
|
|
|
% TODO the real reason we log-transformed was because box-cox and residual plots
|
|
|
|
|
We first asked what the effect of each of our treatment parameters was on the
|
|
|
|
|
responses of interest, which were fold change of the cells, the \ptmemp{}, and
|
|
|
|
|
\dpthp{} (the shift in \pthp{} at day 14 compared to the initial \pthp{}). We
|
|
|
|
|
performed a linear regression using activation method and bioreactor as
|
|
|
|
|
predictors (the only treatments that were shown to be balanced)
|
|
|
|
|
(\cref{tab:ci_treat}). Note that fold change was log transformed to reflect the
|
|
|
|
|
exponential nature of T cell growth. We observe that the treatments are
|
|
|
|
|
significant in all cases except for the \dpthp{}; however, we also observe that
|
|
|
|
|
relatively little of the variability is explained by these simple models ($R^2$
|
|
|
|
|
between 0.17 and 0.44).
|
|
|
|
|
|
|
|
|
|
% TODO add the regression diagnostics to this
|
|
|
|
|
We then included all covariates and unbalanced treatment parameters and
|
|
|
|
|
performed linear regression again
|
|
|
|
|
(\cref{tab:ci_controlled,fig:metaanalysis_fx}). We observe that after
|
|
|
|
|
controlling for additional noise, the models explained much more variability
|
|
|
|
|
($R^2$ between 0.76 and 0.87) and had relatively constant variance and small
|
|
|
|
|
deviations for normality as per the assumptions of regression analysis {Figure
|
|
|
|
|
X}. Furthermore, the coefficient for activation method in the case of fold
|
|
|
|
|
change changed very little but still remained quite high (note the
|
|
|
|
|
log-transformation) with \SI{143}{\percent} increase in fold change compared to
|
|
|
|
|
beads. Furthermore, the coefficient for \ptmemp{} dropped to about
|
|
|
|
|
\SI{2.7}{\percent} different and almost became non-significant at $\upalpha$ =
|
|
|
|
|
0.05, and the \dpthp{} response increased to almost a \SI{9}{\percent} difference
|
|
|
|
|
and became highly significant. Looking at the bioreactor treatment, we see that
|
|
|
|
|
using the bioreactor in the case of fold change and \ptmemp{} is actually harmful
|
|
|
|
|
to the response, while at the same time it seems to increase the \dpthp{}
|
|
|
|
|
response. We should note that this parameter merely represents whether or not
|
|
|
|
|
the choice was made experimentally to use a bioreactor or not; it does not
|
|
|
|
|
indicate why the bioreactor helped or hurt a certain response. For example,
|
|
|
|
|
using a Grex entails changing the cell surface and feeding strategy for the T
|
|
|
|
|
cells, and any one of these ‘mediating variables’ might actually be the cause of
|
|
|
|
|
the responses.
|
|
|
|
|
|
2021-07-23 13:03:28 -04:00
|
|
|
|
% TODO these tables have extra crap in them that I don't need to show
|
|
|
|
|
\begin{table}[!h] \centering
|
|
|
|
|
\caption{Causal Inference on treatment variables only}
|
|
|
|
|
\label{tab:ci_treat}
|
|
|
|
|
\input{../tables/causal_inference_treat.tex}
|
|
|
|
|
\end{table}
|
|
|
|
|
|
|
|
|
|
\begin{table}[!h] \centering
|
|
|
|
|
\caption{Causal Inference on treatment variables and control variables}
|
|
|
|
|
\label{tab:ci_controlled}
|
|
|
|
|
\input{../tables/causal_inference_control.tex}
|
|
|
|
|
\end{table}
|
|
|
|
|
|
2021-07-23 18:36:32 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/metaanalysis_effects.png}
|
|
|
|
|
\phantomsubcaption\label{fig:metaanalysis_fx_exp}
|
|
|
|
|
\phantomsubcaption\label{fig:metaanalysis_fx_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:metaanalysis_fx_cd4}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Meta-analysis effect sizes]
|
|
|
|
|
{\glspl{dms} exhibit superior performance compared to beads controlling for
|
|
|
|
|
many experimental and process conditions. Effect sizes for
|
|
|
|
|
\subcap{fig:metaanalysis_fx_exp}{fold change},
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\subcap{fig:metaanalysis_fx_mem}{\ptmemp{}}, and
|
|
|
|
|
\subcap{fig:metaanalysis_fx_cd4}{\dpthp{}}. The dotted line represents
|
2021-07-23 18:36:32 -04:00
|
|
|
|
the mean of the bead population. The red and blue dots represent the effect
|
|
|
|
|
size of using \gls{dms} instead of beads only considering treatment
|
|
|
|
|
variables (\cref{tab:ci_treat}) or treatment and control variables
|
|
|
|
|
(\cref{tab:ci_controlled}) respectively.
|
|
|
|
|
}
|
2021-07-25 22:25:23 -04:00
|
|
|
|
\label{fig:metaanalysis_fx}
|
2021-07-23 18:36:32 -04:00
|
|
|
|
\end{figure*}
|
2021-07-23 12:18:00 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{discussion}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-25 22:53:14 -04:00
|
|
|
|
% TODO this is fluffy
|
|
|
|
|
We have developed a T cell expansion system that recapitulates key features of
|
|
|
|
|
the in vivo lymph node microenvironment using DMSs functionalized with
|
|
|
|
|
activating mAbs. This strategy provided superior expansion with higher number of
|
|
|
|
|
naïve/memory and CD4+ T cells compared to state-of-the-art microbead technology
|
|
|
|
|
(Figure 2). Other groups have used biomaterials approaches to mimic the in vivo
|
|
|
|
|
microenvironment13–15,17,34; however, to our knowledge this is the first system
|
|
|
|
|
that specifically drives naïve/memory and CD4+ T cell formation in a scalable,
|
|
|
|
|
potentially bioreactor-compatible manufacturing process.
|
|
|
|
|
|
|
|
|
|
Memory and naïve T cells have been shown to be important clinically. Compared to
|
|
|
|
|
effectors, they have a higher proliferative capacity and are able to engraft for
|
|
|
|
|
months; thus they are able to provide long-term immunity with smaller
|
|
|
|
|
doses19,35. Indeed, less differentiated T cells have led to greater survival
|
|
|
|
|
both in mouse tumor models and human patients20,36,37. Furthermore, clinical
|
|
|
|
|
response rates have been positively correlated with T cell expansion, implying
|
|
|
|
|
that highly-proliferative naïve and memory T cells are a significant
|
|
|
|
|
contributor18,38. Circulating memory T cells have also been found in complete
|
|
|
|
|
responders who received CAR T cell therapy39.
|
|
|
|
|
|
|
|
|
|
Similarly, CD4 T cells have been shown to play an important role in CAR T cell
|
|
|
|
|
immunotherapy. It has been shown that CAR T doses with only CD4 or a mix of CD4
|
|
|
|
|
and CD8 T cells confer greater tumor cytotoxicity than only CD8 T cells22,40.
|
|
|
|
|
There are several possible reasons for these observations. First, CD4 T cells
|
|
|
|
|
secrete proinflammatory cytokines upon stimulation which may have a synergistic
|
|
|
|
|
effect on CD8 T cells. Second, CD4 T cells may be less prone to exhaustion and
|
|
|
|
|
may more readily adopt a memory phenotype compared to CD8 T cells22. Third, CD8
|
|
|
|
|
T cells may be more susceptible than CD4 T cells to dual stimulation via the CAR
|
|
|
|
|
and endogenous T Cell Receptor (TCR), which could lead to overstimulation,
|
|
|
|
|
exhaustion, and apoptosis23. Despite evidence for the importance of CD4 T cells,
|
|
|
|
|
more work is required to determine the precise ratios of CD4 and CD8 T cell
|
|
|
|
|
subsets to be included in CAR T cell therapy given a disease state.
|
|
|
|
|
|
|
|
|
|
% TODO this might be more appropriate for aim 2b where I actually talk about
|
|
|
|
|
% the signaling and why this might matter
|
|
|
|
|
There are several plausible explanations for the observed phenotypic differences
|
|
|
|
|
between beads and DMSs. First, the DMSs are composed of a collagen derivative
|
2021-07-25 22:59:33 -04:00
|
|
|
|
(gelatin); collagen has been shown to costimulate activated T cells via
|
|
|
|
|
\gls{a2b1} and \gls{a2b2}, leading to enhanced proliferation, increased
|
|
|
|
|
IFN$\upgamma$ production, and upregulated CD25 (IL2R$\upalpha$) surface
|
|
|
|
|
expression8,10,11,41,42. Second, there is evidence that providing a larger
|
|
|
|
|
contact area for T cell activation provides greater stimulation16,43; the DMSs
|
|
|
|
|
have a rougher interface than the 5 µm magnetic beads, and thus could facilitate
|
|
|
|
|
these larger contact areas. Third, the DMSs may allow the T cells to cluster
|
|
|
|
|
more densely compared to beads, as evidenced by the large clusters on the
|
|
|
|
|
outside of the DMSs (Figure 1f) as well as the significant fraction of DMSs
|
|
|
|
|
found within their interiors (Supplemental Figure 2a and b). This may alter the
|
|
|
|
|
local cytokine environment and trigger different signaling pathways.
|
|
|
|
|
Particularly, IL15 and IL21 are secreted by T cells and known to drive memory
|
|
|
|
|
phenotype44–46. We noted that the IL15 and IL21 concentration was higher in a
|
|
|
|
|
majority of samples when comparing beads and DMSs across multiple timepoints
|
|
|
|
|
(Supplemental Figure 18) in addition to many other cytokines. IL15 and IL21 are
|
|
|
|
|
added exogenously to T cell cultures to enhance memory frequency,45,47 and our
|
|
|
|
|
data here suggest that the DMSs are better at naturally producing these
|
|
|
|
|
cytokines and limiting this need. Furthermore, IL15 unique signals in a trans
|
|
|
|
|
manner in which IL15 is presented on IL15R to neighboring cells48. The higher
|
|
|
|
|
cell density in the DMS cultures would lead to more of these trans interactions,
|
|
|
|
|
and therefore upregulate the IL15 pathway and lead to more memory T cells.
|
2021-07-25 22:53:14 -04:00
|
|
|
|
|
|
|
|
|
% TODO this mentions the DOE which is in the next aim
|
|
|
|
|
When analyzing all our experiments comprehensively using causal inference, we
|
|
|
|
|
found that all three of our responses were significantly increased when
|
|
|
|
|
controlling for covariates (Figure 3, Table 2). By extension, this implies that
|
|
|
|
|
not only will DMSs lead to higher fold change overall, but also much higher fold
|
|
|
|
|
change in absolute numbers of memory and CD4+ T cells. Furthermore, we found
|
|
|
|
|
that using a Grex bioreactor is detrimental to fold change and memory percent
|
|
|
|
|
while helping CD4+. Since there are multiple consequences to using a Grex
|
|
|
|
|
compared to tissue-treated plates, we can only speculate as to why this might be
|
|
|
|
|
the case. Firstly, when using a Grex we did not expand the surface area on which
|
|
|
|
|
the cells were growing in a comparable way to that of polystyrene plates. In
|
|
|
|
|
conjunction with our DOE data {Figure X} which shows that high DMS
|
|
|
|
|
concentrations favor CD4+ and don’t favor memory fraction, one possible
|
|
|
|
|
explanation is that the T cells spent longer times in highly activating
|
|
|
|
|
conditions (since the beads and DMSs would have been at higher per-area
|
|
|
|
|
concentrations in the Grex vs polystyrene plates). Furthermore, the simple fact
|
|
|
|
|
that the T cells spent more time at high surface densities could simply mean
|
|
|
|
|
that the T cells didn’t expands as much due to spacial constraints. This would
|
|
|
|
|
all be despite the fact that Grex bioreactors are designed to lead to better T
|
|
|
|
|
cell expansion due to their gas-permeable membranes and higher media-loading
|
|
|
|
|
capacities. If anything, our data suggests we were using the bioreactor
|
|
|
|
|
sub-optimally, and the hypothesized causes for why our T cells did not expand
|
|
|
|
|
could be verified with additional experiments varying the starting cell density
|
|
|
|
|
and/or using larger bioreactors.
|
|
|
|
|
|
|
|
|
|
A key question in the space of cell manufacturing is that of donor variability.
|
|
|
|
|
To state this precisely, this is a second order interaction effect that
|
|
|
|
|
represents the change in effect of treatment (eg bead vs DMS) given the donor.
|
|
|
|
|
While our meta-analysis was relatively large compared to many published
|
|
|
|
|
experiments usually seen for technologies at this developmental stage, we have a
|
|
|
|
|
limited ability in answering this question. We can control for donor as a
|
|
|
|
|
covariate, and indeed our models show that many of the donor characteristics are
|
|
|
|
|
strongly associated with each response on average, but these are first order
|
|
|
|
|
effects and represent the association of age, gender, demographic, etc given
|
|
|
|
|
everything else in the model is held constant. Second order interactions require
|
|
|
|
|
that our treatments be relatively balanced and random across each donor, which
|
|
|
|
|
is a dubious assumption for our dataset. However, this can easily be solved by
|
|
|
|
|
performing more experiments with these restrictions in mind, which will be a
|
|
|
|
|
subject of our future work.
|
|
|
|
|
|
|
|
|
|
Furthermore, this dataset offers an interesting insight toward novel hypothesis
|
|
|
|
|
that might be further investigated. One limitation of our dataset is that we
|
|
|
|
|
were unable to investigate the effects of time using a method such as
|
|
|
|
|
autoregression, and instead relied on aggregate measures such as the total
|
|
|
|
|
amount of a reagent added over the course of the expansion. Further studies
|
|
|
|
|
should be performed to investigate the temporal relationship between phenotype,
|
|
|
|
|
cytokine concentrations, feed rates, and other measurements which may perturb
|
|
|
|
|
cell cultures, as this will be the foundation of modern process control
|
|
|
|
|
necessary to have a fully-automated manufacturing system.
|
|
|
|
|
|
|
|
|
|
In addition to larger numbers of potent T cells, other advantages of our DMS
|
|
|
|
|
approach are that the DMSs are large enough to be filtered (approximately 300
|
|
|
|
|
µm) using standard 40 µm cell filters or similar. If the remaining cells inside
|
|
|
|
|
that DMSs are also desired, digestion with dispase or collagenase may be used.
|
|
|
|
|
Collagenase D may be selective enough to dissolve the DMSs yet preserve surface
|
|
|
|
|
markers which may be important to measure as critical quality attributes CQAs
|
|
|
|
|
{Figure X}. Furthermore, our system should be compatible with
|
|
|
|
|
large-scale static culture systems such as the G-Rex bioreactor or perfusion
|
|
|
|
|
culture systems, which have been previously shown to work well for T cell
|
|
|
|
|
expansion12,50,51. The microcarriers used to create the DMSs also have a
|
|
|
|
|
regulatory history in human cell therapies that will aid in clinical
|
|
|
|
|
translation.; they are already a component in an approved retinal pigment
|
|
|
|
|
epithelial cell product for Parkinson’s patients, and are widely available in 30
|
|
|
|
|
countries26.
|
|
|
|
|
|
|
|
|
|
It is important to note that all T cell cultures in this study were performed up
|
|
|
|
|
to 14 days. Others have demonstrated that potent memory T cells may be obtained
|
|
|
|
|
simply by culturing T cells as little as 5 days using traditional beads30. It is
|
|
|
|
|
unknown if the naïve/memory phenotype of our DMS system could be further
|
|
|
|
|
improved by reducing the culture time, but we can hypothesize that similar
|
|
|
|
|
results would be observed given the lower number of doublings in a 5 day
|
|
|
|
|
culture. We should also note that we investigated one subtype (\ptmem{}) in
|
|
|
|
|
this study. Future work will focus on other memory subtypes such as tissue
|
|
|
|
|
resident memory and stem memory T cells, as well as the impact of using the DMS
|
|
|
|
|
system on the generation of these subtypes.
|
|
|
|
|
|
|
|
|
|
% TODO this sounds sketchy
|
|
|
|
|
Another advantage is that the DMS system appears to induce a faster growth rate
|
|
|
|
|
of T cells given the same IL2 concentration compared to beads (Supplemental
|
|
|
|
|
Figure 8) along with retaining naïve and memory phenotype. This has benefits in
|
|
|
|
|
multiple contexts. Firstly, some patients have small starting T cell populations
|
|
|
|
|
(such as infants or those who are severely lymphodepleted), and thus require
|
|
|
|
|
more population doublings to reach a usable dose. Our data suggests the time to
|
|
|
|
|
reach this dose would be reduced, easing scheduling a reducing cost. Secondly,
|
|
|
|
|
the allogeneic T cell model would greatly benefit from a system that could
|
|
|
|
|
create large numbers of T cells with naïve and memory phenotype. In contrast to
|
|
|
|
|
the autologous model which is currently used for Kymriah and Yescarta,
|
|
|
|
|
allogeneic T cell therapy would reduce cost by spreading manufacturing expenses
|
|
|
|
|
across many doses for multiple patients52. Since it is economically advantageous
|
|
|
|
|
to grow as many T cells as possible in one batch in the allogeneic model
|
|
|
|
|
(reduced start up and harvesting costs, fewer required cell donations), the DMSs
|
|
|
|
|
offer an advantage over current technology.
|
|
|
|
|
|
|
|
|
|
% TODO this is already stated in the innovation section
|
|
|
|
|
It should be noted that while we demonstrate a method providing superior
|
|
|
|
|
performance compared to bead-based expansion, the cell manufacturing field would
|
|
|
|
|
tremendously benefit from simply having an alternative to state-of-the-art
|
|
|
|
|
methods. The patents for bead-based expansion are owned by few companies and
|
|
|
|
|
licensed accordingly; having an alternative would provide more competition in
|
|
|
|
|
the market, reducing costs and improving access for academic researchers and
|
|
|
|
|
manufacturing companies.
|
|
|
|
|
|
|
|
|
|
% TODO this isn't relevent to this aim but should be said somewhere
|
|
|
|
|
Finally, while we have demonstrated the DMS system in the context of CAR T
|
|
|
|
|
cells, this method can theoretically be applied to any T cell immunotherapy
|
|
|
|
|
which responds to anti-CD3/CD28 mAb and cytokine stimulation. These include
|
2021-07-25 22:59:33 -04:00
|
|
|
|
\glspl{til}, virus-specific T cells (VSTs), T cells engineered to express
|
|
|
|
|
$\upgamma\updelta$TCR (TEGs), $\upgamma\updelta$ T cells, T cells with
|
|
|
|
|
transduced-TCR, and CAR-TCR T cells53–58. Similar to CD19-CARs used in liquid
|
|
|
|
|
tumors, these T cell immunotherapies would similarly benefit from the increased
|
|
|
|
|
proliferative capacity, metabolic fitness, migration, and engraftment potential
|
|
|
|
|
characteristic of naïve and memory phenotypes59–61. Indeed, since these T cell
|
|
|
|
|
immunotherapies are activated and expanded with either soluble mAbs or
|
|
|
|
|
bead-immobilized mAbs, our system will likely serve as a drop-in substitution to
|
|
|
|
|
provide these benefits.
|
2021-07-25 22:53:14 -04:00
|
|
|
|
|
2021-07-25 23:11:30 -04:00
|
|
|
|
\chapter{aim 2a}\label{aim2a}
|
|
|
|
|
|
|
|
|
|
\section{introduction}
|
|
|
|
|
\section{methods}
|
|
|
|
|
\section{results}
|
2021-07-26 15:47:11 -04:00
|
|
|
|
|
|
|
|
|
\subsection{DOE shows optimal conditions for expanded potent T cells}
|
|
|
|
|
|
2021-07-27 11:24:55 -04:00
|
|
|
|
% TODO this plots proportions look dumb
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/il2_modulation.png}
|
|
|
|
|
\phantomsubcaption\label{fig:il2_mod_timecourse}
|
|
|
|
|
\phantomsubcaption\label{fig:il2_mod_total}
|
|
|
|
|
\phantomsubcaption\label{fig:il2_mod_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:il2_mod_flow}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[T cells grown at varying IL2 concentrations]
|
|
|
|
|
{\glspl{dms} grow T cells effectively at lower IL2 concentrations.
|
|
|
|
|
\subcap{fig:il2_mod_timecourse}{Longitudinal cell counts of T cells grown
|
|
|
|
|
with either bead or \glspl{dms} using varying IL2 concentrations}
|
|
|
|
|
Day 14 counts of either \subcap{fig:il2_mod_total}{total cells} or
|
|
|
|
|
\subcap{fig:il2_mod_mem}{\ptmem{} cells} plotted against \gls{il2}
|
|
|
|
|
concentration.
|
|
|
|
|
\subcap{fig:il2_mod_flow}{Flow cytometry plots of the \ptmem{} gated
|
|
|
|
|
populations at day 14 of culture for each \gls{il2} concentration.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:il2_mod}
|
|
|
|
|
\end{figure*}
|
2021-07-26 16:42:17 -04:00
|
|
|
|
|
|
|
|
|
% TODO not all of these were actually use, explain why by either adding columns
|
|
|
|
|
% or marking with an asterisk
|
|
|
|
|
\begin{table}[!h] \centering
|
|
|
|
|
\caption{DOE Runs}
|
|
|
|
|
\label{tab:doe_runs}
|
|
|
|
|
\input{../tables/doe_runs.tex}
|
|
|
|
|
\end{table}
|
|
|
|
|
|
2021-07-26 15:47:11 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/modeling_overview.png}
|
|
|
|
|
\phantomsubcaption\label{fig:mod_overview_flow}
|
|
|
|
|
\phantomsubcaption\label{fig:mod_overview_doe}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Modeling Overview]
|
|
|
|
|
{Overview of modeling experiments.
|
|
|
|
|
\subcap{fig:mod_overview_flow}{Relationship
|
|
|
|
|
between \gls{doe} experiments and AI driven prediction. \glspl{doe} will
|
|
|
|
|
be used to determine optimal process input conditions, and longitudinal
|
|
|
|
|
multiomics data will be used to fit predictive models. Together, these
|
|
|
|
|
will reveal predictive species that may be used for \glspl{cqa} and
|
|
|
|
|
\glspl{cpp}.}
|
|
|
|
|
\subcap{fig:mod_overview_doe}{Overview of the two \gls{doe} experiments; the
|
|
|
|
|
initial \gls{doe} is given by the blue points and the augmented \gls{doe}
|
|
|
|
|
is given by the blue points.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:mod_overview}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/doe_responses.png}
|
|
|
|
|
\phantomsubcaption\label{fig:doe_responses_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:doe_responses_cd4}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[T cell optimization through Design of Experiments]
|
|
|
|
|
{\gls{doe} methodology reveals optimal conditions for expanding T cell
|
|
|
|
|
subsets. Responses vs IL2 concentration, \gls{dms} concentration, and
|
|
|
|
|
functional \gls{mab} percentage are shown for
|
|
|
|
|
\subcap{fig:doe_responses_mem}{total \ptmem{} T cells} and
|
|
|
|
|
\subcap{fig:doe_responses_cd4}{total \pth{} T cells}. Each point represents
|
|
|
|
|
one run.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:doe_responses}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-26 16:42:17 -04:00
|
|
|
|
% TODO add DOE regression tables
|
2021-07-26 15:47:11 -04:00
|
|
|
|
|
|
|
|
|
% TODO this section header sucks
|
|
|
|
|
\subsection{AI modeling reveals highly predictive species}
|
|
|
|
|
|
2021-07-26 16:42:17 -04:00
|
|
|
|
% TODO this table looks like crap, break it up into smaller tables
|
|
|
|
|
\begin{table}[!h] \centering
|
|
|
|
|
\caption{Results for data-driven modeling}
|
|
|
|
|
\label{tab:mod_results}
|
|
|
|
|
\input{../tables/model_results.tex}
|
|
|
|
|
\end{table}
|
2021-07-26 15:47:11 -04:00
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/modeling_flower.png}
|
|
|
|
|
\phantomsubcaption\label{fig:mod_flower_48r}
|
|
|
|
|
\phantomsubcaption\label{fig:mod_flower_cd4}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Data-Driven \gls{cqa} identification]
|
|
|
|
|
{Data-driven modeling using techniques with regularization reveals species
|
|
|
|
|
predictive species which are candidates for \glspl{cqa}. Flower plots are
|
|
|
|
|
shown for \subcap{fig:mod_flower_48r}{CD4:CD8 ratio} and
|
|
|
|
|
\subcap{fig:mod_flower_cd4}{total \ptmemh{} cells}. The left and right
|
|
|
|
|
columns includes models that were trained only on the secretome and
|
|
|
|
|
metabolome respectively. Each flower on each plot represents one model,
|
|
|
|
|
moving toward the center indicates higher agreement between models.}
|
|
|
|
|
\label{fig:mod_flower}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-25 23:11:30 -04:00
|
|
|
|
\section{discussion}
|
|
|
|
|
|
|
|
|
|
\chapter{aim 2b}\label{aim2b}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{introduction}
|
|
|
|
|
\section{methods}
|
|
|
|
|
\section{results}
|
2021-07-26 18:16:21 -04:00
|
|
|
|
|
|
|
|
|
\subsection{adding or removing DMSs alters expansion and phenotype}
|
|
|
|
|
|
|
|
|
|
% TODO this figure is tall and skinny like me
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/collagenase.png}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Effects Collagenase Treatment on T cells]
|
|
|
|
|
{T cells treated with either \gls{colb}, \gls{cold}, or buffer and then
|
|
|
|
|
stained for various surface markers and analyzing via flow cytometry.}
|
|
|
|
|
\label{fig:collagenase_fx}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
% TODO this figure still says "carrier"
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/add_remove_endpoint.png}
|
|
|
|
|
\phantomsubcaption\label{fig:add_rem_growth}
|
|
|
|
|
\phantomsubcaption\label{fig:add_rem_viability}
|
|
|
|
|
\phantomsubcaption\label{fig:add_rem_cd4}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Endpoint results from adding/removing \gls{dms} on day 4]
|
|
|
|
|
{Changing \gls{dms} concentration on day 4 has profound effects on phenotype
|
|
|
|
|
and growth.
|
|
|
|
|
\subcap{fig:add_rem_growth}{Longitudinal fold change},
|
|
|
|
|
\subcap{fig:add_rem_viability}{longitudinal viability}, and
|
|
|
|
|
\subcap{fig:add_rem_cd4}{day 14 \pthp{}} of T cell cultures with \glspl{dms}
|
|
|
|
|
added, removed, or kept the same on day 4.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:add_rem}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
% TODO this needs some better annotations
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/add_remove_spade.png}
|
|
|
|
|
\phantomsubcaption\label{fig:spade_msts}
|
|
|
|
|
\phantomsubcaption\label{fig:spade_tsne_all}
|
|
|
|
|
\phantomsubcaption\label{fig:spade_tsne_stem}
|
|
|
|
|
\phantomsubcaption\label{fig:spade_quant}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[SPADE and tSNE analysis temporally-modified DMS concentration]
|
|
|
|
|
{Removing \glspl{dms} leads to a higher fraction of potent stem-memory T
|
|
|
|
|
cells compared to both adding and not changing the \gls{dms} concentration
|
|
|
|
|
at day 4.
|
|
|
|
|
\subcap{fig:spade_msts}{SPADE plots of CD4, CD45RA, CD27, and CD45RO
|
|
|
|
|
expression on T cells. All cells from the added, removed, or no change
|
|
|
|
|
groups were pooled and clustered at once.}
|
|
|
|
|
\subcap{fig:spade_tsne_all}{\gls{tsne} plots of all cells pooled from all
|
|
|
|
|
groups.}
|
|
|
|
|
\subcap{fig:spade_tsne_stem}{\gls{tsne} plots of T cells from all groups
|
|
|
|
|
manually gated on \cdp{8}\cdp{27}\cdp{45RO}.}
|
|
|
|
|
\subcap{fig:spade_quant}{T cells from SPADE plots clustered by expression in
|
|
|
|
|
(\subref{fig:spade_msts}) quantified against total cell number from each
|
|
|
|
|
group.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:spade}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\subsection{blocking integrin binding does not alter expansion or phenotype}
|
|
|
|
|
|
|
|
|
|
% TODO perhaps these figs should be combined
|
|
|
|
|
% TODO actually make the captions for these
|
|
|
|
|
% TODO add some background into why integrins are important and the proposed mechanism
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/integrin_1.png}
|
|
|
|
|
\phantomsubcaption\label{fig:inegrin_1_fc}
|
|
|
|
|
\phantomsubcaption\label{fig:inegrin_1_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:inegrin_1_cd49}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Integrin blocking I]
|
|
|
|
|
{Blocking with integrin does not lead to differences in memory or growth.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:integrin_1}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/integrin_2.png}
|
|
|
|
|
\phantomsubcaption\label{fig:inegrin_2_fc}
|
|
|
|
|
\phantomsubcaption\label{fig:inegrin_2_mem}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Integrin blocking II]
|
|
|
|
|
{Blocking with integrin does not lead to differences in memory or growth.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:integrin_2}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\subsection{blocking IL15 signaling does not alter expansion or phenotype}
|
|
|
|
|
|
|
|
|
|
% TODO actually add captions
|
|
|
|
|
% TODO add fold change and viability to these
|
|
|
|
|
% TODO maybe combine these
|
|
|
|
|
% TODO add some background into why IL15 is important and the proposed mechanism
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/il15_blockade_1.png}
|
|
|
|
|
\phantomsubcaption\label{fig:il15_1_fc}
|
|
|
|
|
\phantomsubcaption\label{fig:il15_1_viability}
|
|
|
|
|
\phantomsubcaption\label{fig:il15_1_mem}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[IL15 blocking I]
|
|
|
|
|
{Blocking with IL15 does not lead to differences in memory or growth.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:il15_1}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/il15_blockade_2.png}
|
|
|
|
|
\phantomsubcaption\label{fig:il15_2_fc}
|
|
|
|
|
\phantomsubcaption\label{fig:il15_2_viability}
|
|
|
|
|
\phantomsubcaption\label{fig:il15_2_mem}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[IL15 blocking II]
|
|
|
|
|
{Blocking with IL15 does not lead to differences in memory or growth.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:il15_2}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{discussion}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 18:34:50 -04:00
|
|
|
|
\chapter{aim 3}\label{aim3}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{introduction}
|
|
|
|
|
\section{methods}
|
2021-07-25 23:09:00 -04:00
|
|
|
|
|
|
|
|
|
\subsection{CD19-CAR T cell generation}
|
|
|
|
|
|
|
|
|
|
% TODO describe how T cells were grown for this aim
|
|
|
|
|
|
|
|
|
|
% TODO describe how the luciferase cells were generated (eg the kwong lab)
|
|
|
|
|
|
|
|
|
|
\subsection{\invivo{} therapeutic efficacy in NSG mice model}
|
|
|
|
|
|
|
|
|
|
% TODO use actual product numbers for mice
|
|
|
|
|
All mice in this study were male \gls{nsg} mice from Jackson Laboratories. At
|
|
|
|
|
day 0 (-7 day relative to T cell injection), 1e6 firefly luciferase-expressing
|
|
|
|
|
\product{Nalm-6 cells}{ATCC}{CRL-3273} suspended in ice-cold PBS were injected
|
|
|
|
|
via tail vein into each mouse. At day 7, saline or CAR T cells at the indicated
|
|
|
|
|
doses from either bead or DMS-expanded T cell cultures (for 14 days) were
|
|
|
|
|
injected into each mouse via tail vein. Tumor burden was quantified
|
|
|
|
|
longitudinally via IVIS Spectrum In Vivo Imaging System (Perkin Elmer). Briefly,
|
|
|
|
|
200ug/mice luciferin at 15 mg/ml in PBS was injected intraperitoneally under
|
|
|
|
|
isoflurane anesthesia into each mouse and waited for at least 10 minutes before
|
|
|
|
|
imaging. Mice were anesthetized again and imaged using the IVIS. Mice from each
|
|
|
|
|
treatment group/dose were anesthetized, injected, and imaged together, and
|
|
|
|
|
exposure time of the IVIS was limited to avoid saturation based on the signal
|
|
|
|
|
from the saline group. IVIS images were processed by normalizing them to common
|
|
|
|
|
minimum and maximum photon counts and total flux was estimated in terms of
|
|
|
|
|
photons/second. Endpoint for each mouse was determined by IACUC euthanasia
|
|
|
|
|
criteria (hunched back, paralysis, blindness, lethargy, and weight loss).
|
|
|
|
|
Mice were euthanized according to these endpoint criteria using carbon dioxide
|
|
|
|
|
asphyxiation.
|
|
|
|
|
|
|
|
|
|
\subsection{statistics}
|
|
|
|
|
|
|
|
|
|
For the \invivo{} model, the survival curves were created and statistically
|
|
|
|
|
analyzed using GraphPad Prism using the Mantel-Cox test to assess significance
|
|
|
|
|
between survival groups.
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{results}
|
2021-07-26 13:24:31 -04:00
|
|
|
|
|
|
|
|
|
\subsection{DMS-expanded T cells show greater anti-tumor activity \invivo{}
|
|
|
|
|
compared to beads}
|
|
|
|
|
|
2021-07-26 13:50:51 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/mouse_dosing_overview.png}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Mouse Dosing Experimental Overview]
|
|
|
|
|
{Overview of \invivo{} experiment to test \gls{car} T cells expanded with
|
|
|
|
|
either \glspl{dms} at different doses. }
|
|
|
|
|
\label{fig:mouse_dosing_overview}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{table}[!h] \centering
|
|
|
|
|
\caption{Results for \gls{car} T cell \invivo{} dose study}
|
|
|
|
|
\label{tab:mouse_dosing_results}
|
|
|
|
|
\input{../tables/mouse_dose_car.tex}
|
|
|
|
|
\end{table}
|
|
|
|
|
|
|
|
|
|
% TODO put growth first in this figure
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/mouse_dosing_qc.png}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_qc_mem}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_qc_cd4}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_qc_growth}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Mouse Dosing T cell Characteristics]
|
|
|
|
|
{Characteristics of T cells harvested at day 14 injected into NSG
|
|
|
|
|
mice at varying doses.
|
|
|
|
|
Fractions of T cell subtypes in the day 14 product including
|
|
|
|
|
\subcap{fig:mouse_dosing_qc_mem}{\ptmemp{}}.
|
|
|
|
|
\subcap{fig:mouse_dosing_qc_cd4}{\pthp{}}, and
|
|
|
|
|
\subcap{fig:mouse_dosing_qc_growth}{Fold change of T cells.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:mouse_dosing_qc}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
% TODO explain what statistical test was used here
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/mouse_dosing_ivis.png}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_ivis_images}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_ivis_plots}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_ivis_survival}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_dosing_ivis_survival_comp}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Mouse Dosing IVIS and Survival Results]
|
|
|
|
|
{T cells expanded with \glspl{dms} confer greater anti-tumor potency \invivo{}
|
|
|
|
|
even at lower doses.
|
|
|
|
|
\subcap{fig:mouse_dosing_ivis_images}{IVIS images of Nalm-6 tumor-bearing
|
|
|
|
|
\gls{nsg} mice injected with varying doses of T cells}
|
|
|
|
|
\subcap{fig:mouse_dosing_ivis_plots}{Plots showing quantified photon counts
|
|
|
|
|
of the results from (\subref{fig:mouse_dosing_ivis_plots}).}
|
|
|
|
|
\subcap{fig:mouse_dosing_ivis_survival}{Survival plots of mice}
|
|
|
|
|
\subcap{fig:mouse_dosing_ivis_survival_comp}{Survival plots of mice showing
|
|
|
|
|
only those that received a comparable number of \gls{car} T cells.}
|
|
|
|
|
}
|
|
|
|
|
\label{fig:mouse_dosing_ivis}
|
|
|
|
|
\end{figure*}
|
2021-07-26 13:24:31 -04:00
|
|
|
|
|
|
|
|
|
\subsection{Beads and DMSs perform similarly at earlier timepoints}
|
|
|
|
|
|
2021-07-26 13:50:51 -04:00
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/mouse_timecourse_overview.png}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Mouse Timecourse Experimental Overview]
|
|
|
|
|
{Overview of \invivo{} experiment to test \gls{car} T cells using either
|
|
|
|
|
\glspl{dms} or bead harvested at varying timepoints.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:mouse_timecourse_overview}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/mouse_timecourse_qc.png}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_timecourse_qc_growth}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_timecourse_qc_car}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_timecourse_qc_cd4}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_timecourse_qc_mem}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Mouse Timecourse T cell Characteristics]
|
|
|
|
|
{Characteristics of T cells harvested at varying timepoints injected into NSG
|
|
|
|
|
mice.
|
|
|
|
|
\subcap{fig:mouse_timecourse_qc_growth}{Fold change of T cells (each
|
|
|
|
|
timepoint only includes the runs that were harvested at day 14).}
|
|
|
|
|
Fractions of T cell subtypes in the day 14 product including
|
|
|
|
|
% TODO refactor CAR+ percent into nice macro
|
|
|
|
|
\subcap{fig:mouse_timecourse_qc_car}{\gls{car}+~\si{\percent}},
|
|
|
|
|
\subcap{fig:mouse_timecourse_qc_cd4}{\pthp{}}, and
|
|
|
|
|
\subcap{fig:mouse_timecourse_qc_mem}{\ptmemp{}}.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:mouse_timecourse_qc}
|
|
|
|
|
\end{figure*}
|
|
|
|
|
|
|
|
|
|
\begin{figure*}[ht!]
|
|
|
|
|
\begingroup
|
|
|
|
|
|
|
|
|
|
\includegraphics{../figures/mouse_timecourse_ivis.png}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_timecourse_ivis_images}
|
|
|
|
|
\phantomsubcaption\label{fig:mouse_timecourse_ivis_plots}
|
|
|
|
|
|
|
|
|
|
\endgroup
|
|
|
|
|
\caption[Mouse Timecourse IVIS Results]
|
|
|
|
|
{\glspl{dms} exhibit superior anti-tumor activity \invivo{} at day 14 compared
|
|
|
|
|
to beads but are similar to beads at lower timepoints.
|
|
|
|
|
\subcap{fig:mouse_timecourse_ivis_images}{IVIS images for day 6 to day 42 of
|
|
|
|
|
mice treated with varying doses of \gls{car} T cells grown with beads or
|
|
|
|
|
\glspl{dms}.}
|
|
|
|
|
\subcap{fig:mouse_timecourse_ivis_plots}{Quantified dotplots of the images
|
|
|
|
|
in (\subref{fig:mouse_timecourse_ivis_images}). Numbers beneath each dot
|
|
|
|
|
represent the number of mice at that timepoint.},
|
|
|
|
|
}
|
|
|
|
|
\label{fig:mouse_timecourse_ivis}
|
|
|
|
|
\end{figure*}
|
2021-07-26 13:24:31 -04:00
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{discussion}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
2021-07-22 13:59:46 -04:00
|
|
|
|
\chapter{conclusions and future work}\label{conclusions}
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\section{conclusions}
|
|
|
|
|
\section{future work}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\onecolumn
|
|
|
|
|
\clearpage
|
|
|
|
|
|
|
|
|
|
% TODO some people put appendices here....not sure if I need to
|
|
|
|
|
|
2021-07-22 11:30:00 -04:00
|
|
|
|
\chapter{References}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
\renewcommand{\section}[2]{} % noop the original bib section header
|
|
|
|
|
|
2021-07-22 13:14:35 -04:00
|
|
|
|
\bibliography{references}
|
2021-07-09 12:39:33 -04:00
|
|
|
|
|
|
|
|
|
\bibliographystyle{naturemag}
|
|
|
|
|
|
|
|
|
|
\end{document}
|