ADD luminex doe figure
This commit is contained in:
parent
1c65546e41
commit
572f10a9e4
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 1.7 MiB |
|
@ -1946,6 +1946,29 @@ provide these benefits.
|
|||
|
||||
\subsection{study design}
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
\includegraphics{../figures/modeling_overview.png}
|
||||
\phantomsubcaption\label{fig:mod_overview_flow}
|
||||
\phantomsubcaption\label{fig:mod_overview_doe}
|
||||
|
||||
\endgroup
|
||||
\caption[Modeling Overview]
|
||||
{Overview of modeling experiments.
|
||||
\subcap{fig:mod_overview_flow}{Relationship
|
||||
between \gls{doe} experiments and AI driven prediction. \glspl{doe} will
|
||||
be used to determine optimal process input conditions, and longitudinal
|
||||
multiomics data will be used to fit predictive models. Together, these
|
||||
will reveal predictive species that may be used for \glspl{cqa} and
|
||||
\glspl{cpp}.}
|
||||
\subcap{fig:mod_overview_doe}{Overview of the two \gls{doe} experiments; the
|
||||
initial \gls{doe} is given by the blue points and the augmented \gls{doe}
|
||||
is given by the blue points.}
|
||||
}
|
||||
\label{fig:mod_overview}
|
||||
\end{figure*}
|
||||
|
||||
The first DOE resulted in a randomized 18-run I-optimal custom design where each
|
||||
DMS parameter was evaluated at three levels: IL2 concentration (10, 20, and 30
|
||||
U/uL), DMS concentration (500, 1500, 2500 carrier/uL), and functionalized
|
||||
|
@ -2206,29 +2229,6 @@ Venn diagram from the venn R package.
|
|||
\input{../tables/doe_runs.tex}
|
||||
\end{table}
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
\includegraphics{../figures/modeling_overview.png}
|
||||
\phantomsubcaption\label{fig:mod_overview_flow}
|
||||
\phantomsubcaption\label{fig:mod_overview_doe}
|
||||
|
||||
\endgroup
|
||||
\caption[Modeling Overview]
|
||||
{Overview of modeling experiments.
|
||||
\subcap{fig:mod_overview_flow}{Relationship
|
||||
between \gls{doe} experiments and AI driven prediction. \glspl{doe} will
|
||||
be used to determine optimal process input conditions, and longitudinal
|
||||
multiomics data will be used to fit predictive models. Together, these
|
||||
will reveal predictive species that may be used for \glspl{cqa} and
|
||||
\glspl{cpp}.}
|
||||
\subcap{fig:mod_overview_doe}{Overview of the two \gls{doe} experiments; the
|
||||
initial \gls{doe} is given by the blue points and the augmented \gls{doe}
|
||||
is given by the blue points.}
|
||||
}
|
||||
\label{fig:mod_overview}
|
||||
\end{figure*}
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
|
@ -2269,6 +2269,17 @@ Venn diagram from the venn R package.
|
|||
% TODO this section header sucks
|
||||
\subsection{AI modeling reveals highly predictive species}
|
||||
|
||||
\begin{figure*}[ht!]
|
||||
\begingroup
|
||||
|
||||
\includegraphics{../figures/doe_luminex.png}
|
||||
|
||||
\endgroup
|
||||
\caption[Cytokine release profile of T cells from DOE]
|
||||
{T cells show robust and varying cytokine responses over time}
|
||||
\label{fig:doe_luminex}
|
||||
\end{figure*}
|
||||
|
||||
Due to the heterogeneity of the multivariate data collected and knowing that no
|
||||
single model structure is perfect for all applications, we implemented an
|
||||
agnostic modeling approach to better understand these TN+TCM responses. To
|
||||
|
|
Loading…
Reference in New Issue